AD=A091 043

UNCLASSIFIED

DELAWARE UNIV NEWARK DEPT OF COMPUTER AND INFORMATI=~ETC F/6 9/2
A CASE STUDY IN NATURAL LANGUAGE PROCESSING: THE RUS SYSTEM, (U}
AV 80 A W MANSKY F49620-79=C~0131
AFOSR=TR~80~1035 NL

-
<H
=)
r{
o)
()
T,
(|
<T

FEEEEEEL
EEEE

FEEE

n
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

DAL FILE (COPY.

&
-

;o UNCLASSIFIFY - ' e IR ' /

j 7 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) fi B .
Va REPORT DOCUMENTATION PAGE i} -’5 . C CORE COMPLETING FORM
J7- REPORT NUMBER 2, BovVT RC XA PIENT'S CATALOG NUMBER 4
" [AFOSR-TR- 80-1085 4 D-ApI14| Q44 i
3 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED . k
. i '
1 . il :
A CASE STUDY IN NATURAL LANGUAGE PROCESSING— Interim = g
6. PERFORMING OG. REPORT NUMBER [?|
THE RUS SYSTEM
; 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s))
3 3 o
.- ["y TER0 - 77-C-0/3/
3 7 Arthur William Mansky ‘H/ /// £ Y7820-77
’ o 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT, PROJECT, TASK :
AREA & WORK UNIT NUMBERS s
.+ QrY| University of Delaware ~ s 3
; Department of Computer and Information Sciences ffF‘& :
ﬂl Newark, DE 19711 61102F 2304/A2 Ll 4
11, CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE 5
c Air Force Office of Scientific Research/NM May, 1980 ! :
Bolling AFB 13, NUMBER OF PAGES 5
| Washington, DC_ 20332 121 ;
m 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 15. SECURITY CLASS. (of thias report) :
) UNCLASSIFIED i
152, DECL ASSIFICATION/DOWNGRADING > :
SCHEDULE . RSy 5
16. DISTRIBUTION STATEMENT (of this Report) { 3
o |
<L _ g
Approved for public release, distribution unlimited. ;E
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Repor .':'-*‘
" :
) ?;
18. SUPPLEMENTARY NOTES b~ L
-
19. KEY WORDS (Continue on reverse side il necessary and identify by block number) <.
9] RUS, semantic grammar, AIN, case grammar, semantically directed parsing, s
E‘_ natural language parsers, ill-formed input V..
o o
o 20., ABSTRACT (Continue on reverse side If necessary and Identify by block number) .
_ The RUS system (Bobrow, 1978) is a new parser for English which allows .
‘ i semantically directed parsing by interleaving calls to a separate, independent ;,ﬁi‘
E: i semantic component with syntatic processing in a case-oriented ATN grammar. ohye
E This thesis discusses the syntactic component (RUS), the points at which it p—
calls a semantic component, and the nature of the syntactic-semantic
interaction occurs, the nature of the interaction, and the structure of the :
\ dictionary are the only assumptions placed on the semantic component. 6
DD . oa"ys 1473 eoimion oF 1 nov 8 1s oBsoLETE UNCT ASSTFIED x; ;

— - . - . —— »

UNCLASSIFTFD . i
L
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) . : .

! As a step toward building a user-oriented response facility to input that

is not understood, we have developed diagnostic messages associated with the
states of the RUS AIN grammar. A discussion of the general concepts
involved is provided; the diagnostic message facility for each state is
included in an appendix.

o

R
'

TTTw. - s
SO0 rf'

Y
L

. R
N .
- '
.

anandiaier S S S
.

Wi
s
, R —
k- !
_(qA i E
A ‘; t
g UNCI ASSTFTFD ¥

Seep.e

Q’g) udsn}ﬂno. 80-1035 |

| Masters Zecr)

0

A Case Study in Natural Language Processing:

The RUS Systemg; Accensicn For
LIis L il
Lug
Unoar N
: - RIGERIES T
) l\?/) s e]
R A
' L '/ﬂ/ Arthur William /Mansky

g o

An abstract of a thesis submitted to the Faculty
of the University of Delaware in partial fulfillment of
the requirements for the degree of Master of Science in
Computer and Information Sciences.

*This research was sponsored in part by the Air
Force Office of Scientific Research, Air Force Systems
Command, USAF, _under Contract No. F49620-79-C-013l. The
United States Government is authorized "to reproduce and
distribute reprints for Governmental purposes nothth-
standing any copyright notation heteon.“,,"\»~»~

/F’f// XAt SEEd

May, 1980 ¢ o ;

Approved:

Ralph M. wWeischedel, Ph.D.
Professor in charge of thesis

A
Lie s
Approved for public release}’
. l, . distributionunlimited,

J_038 |

Ce A i PN WOl W 7 Tt n

Abstract

A central design decisionr in developing a ratural
language processirg system is its irterfacirg the syntac- .
tic and semantic components. Previous systems genrerally
can be classed in cne of two extremes ir relating these
two componrents. In the first extreme, syntax and seman-

tics are totally separate. Although this allows the cap-

turing of syntactic regularities ard modifyirg of the two -
] components separately, semantic "knowledge" canrnot guide
parsirg. In the second extreme a "semantic grammar" in-

cludes both the syntactic and semantic knowledge about a

R e e e

particular application domair. Although such a system is :
very efficient when employed ir the domair for which it
was constructed, adding new constructionrs will rot au-
tomatically include their syntactic paraphrases. Further,

changing to a nrew domain wusually requires a complete

L -

rewriting of the grammar.

The RUS system [Bobrow, 1978] falls betweenr these

two extremes. The syntactic and semantic components are

separate, allowing independent modification of the com-

ponents and capture of syntactic regularities, but they
AIR FORCE OFFICE OF SCIENTIFIC

Ihis technical e

s k port hLas bee;
Y 4 APProved for purlic rulujse ;XWr:;;ewed od 1s
Distribution is wnlimiteq 190-12 (7p).

« D. BLOSE %
lechnigal Information Officer

irteract frequently during the parsirg process, allowirg
semantic guidance of the parse. Only the semantic com-

ponent need be charged for a nrew domainr to be hardled.

This thesis discusses the nreed for semantic as
well as syntactic knowledge ir a ratural lanrguage process-
ing system and the trade-offs involved in their interface
design. The syntactic and semantic components of the RUS
System are each examined separately; their representation
and function within the system are outlined. The overall
parser operation, with emphasis on the syntactic-semantic
interface, 1is described. A user's manual gives the de-
tailed steps needed to build the semantic componrnent and

experiment with the system.

As a step toward building a user-oriented error
message facility, we have developed "meanirgs" for marny of
the states of the syntactic trarsitior network. A discus-
sion of the gereral concepts irvolved is followed by a few
examples with explanration. All of the messages are in-
cluded in ar appendix. Another appendix ircludes the

graph of the transition network.

By having frequent semantic interaction durinrg the
parsirg, but keeping the syntactic and semartic componrents
separate, the RUS System has the flexibility and efficien-
cy that 1is necessary in a widely applicable ratural

larguage processing system.

¥

P0G o K s T T Al Bt o

A Case Study in Natural Language Processing:

The RUS System*

by

Arthur William Mansky

A thesis submitted to the faculty of the Universi-
ty of Delaware in partial fulfillment of the requirements
for the degree of Master of Science in Computer and Infor-
mation Sciences.

*This research was sponsored in part by the Air
Force of Scientific Research, Air Force Systems Command,
USAF, under Contract No. F49628-79-C-0131. The United
States Government is authorized to reproduce and distri-
bute reprints for Governmental purposes notwithstanding
any copyright notation hereon.

May, 1980

A Case Study in Natural Larguage Processing:

The RUS System

by

Arthur William Mansky

Approved:
Ralph M. Weischedel, Ph.D.

Professor inr charge of thesis on behalf of the
Advisory Committee

Approved:

Hatem M. Khalil, Ph.D.

Chairmar of the Department of Computer anrd
Information Sciences

Approved:

Richard B. Murray, Ph.D.
University Coordirator for Graduate Studies

iy avinkiie w1 o>

it SRII TR e

—————

Table of Contents
I. Introduction
II. Syntactic Component °

III. Semartic Component
Iv. Parser Operation

V. Meaninrgs of States
VI. Users Manual

VII. Cornclusion

Apperdix A RUS ATN Graph

Appendix B State Mearings: S, VP, and NP Groups

iii

11

23

41

sS4

65

72

78

86

- B OGNt SR SO Pt T e e

Chapter One

Introduction

Wher computers were first built, few people other

thar their designrers were able to use them. As program-

ming larguages progressed from machine larguage to today's
high level lanrguages, more people were able to utilize the
power of the computer. Takirg this progressior to its
ultimate end, communication with the computer would be
carried out as it is between people - via "ratural
lanrguage”. That is, the larguage people use "praturally";

for us, of course, that is English.

The problem, ther, is to build a system that al-
lows the computer to emulate (to some acceptable degree)
our own processing of '"natural larguage" communicatior.
Perhaps the system might be one to accept typed English
irput as a request to the system to perform certain ac-
tions. A database system allowing English queries is a
typical example of this. While this may seem to be orly a
small subset of communication betweer pecople and comput-
ers, it is one that has beer studied for mary years, and
has beern found to be much more difficult a problem than

many had anticipated.

2
The system would need to produce, from the English
irput, a form from which the intent of the user could be
ascertained. This transformation from English input to a
structured form is known as "parsing". For the system ¢to
"understand" ratural language irput, two types of

knowledge are needed. First, the system must "understand"

the rules of grammar that people use (usually subcons-
ciously), the categorizationr of words, the extert of the
vocabulary, and so on. This 1is syntactic knowledge.
Second, the system must "understand" how mearing is
represented within this structure, how context affects the

interpretation, and so on. This 1is semanrtic knowledge.

This marriage of syntax and semantics - the fields of
linguistics and artificial intelligerce - 1is krown as

natural language processing.

While the need to know the syntactic aspects of
the 1input may be obvicus, it is less clear that semantics
plays a necessary role. A few examples illustrating the

need for more thar just syntactic knowledge follow.

The first example, from Chomsky, 1is ore of a
countless number of sentences which are grammatically per-

fect but semantically void.

"Colorless green ideas sleep furiously."

Purely syntactic aralysis would accept the sentence,

3

although it would be difficult to imagire ary circumstance

under which we would want it accepted. The remainring
examples are not nonrsensical sentences, but ores which

require semantics to produce anr interpretatior norethe-

less.

f Unless we knew the whereabouts of each of the two

men, the sentence
"The two men saw three boats tonight"

is ambiguocus. We don't knrow the total rumber of boats
i seen. Clearly, if it is known that the two menr were so

distant from one another that a boat would not be able to

travel from one's visual rarge into the other's 1ir one
evering, then we know that a total of six boats were
sighted. Without any krowledge of the situation, we can-

not know how many boats were seen.

Nomiral compounds are arother illustration of the

need for knowledge about the "meanings" of words. Surely

a construction entirely composed of nouns can hardly be

aralyzed ir great depth using a purely syntactic approach.

"State motor vehicle inspection committee report”

and

"pressure cooker lid whistle adjustment screw"

P

4
are two examples of this. Without krowledge of the ir-
spection of vehicles, committees issuing reports, pressure
cooker 1lids havirg whistles, arnd so or, "understanding"”

these compounds is hopeless.

Pronoun refererce 1is arother issue that is often

unable to be resolved on syntactic grounds alonre.

"I threw the big book orn the chair and it broke."

"I threw the butterfly wing onr the chair anrd it broke."

The "it" ir each of the two sentenrnces above,
refers (most likely) to the chair ir the first senterce,
and to the butterfly wing in the second. Certairly the
syntactic structure of the two was not the critical factor
in assigrirg the referent of "it" (since their syntactic
structures are virtually: the same). Qur knowledge of
books, butterfly wirgs, anrd chairs allowed us to make our

interpretation.

Paraphrase, i.e., usinrg different syntactic struc-
ture, and often, different words, to communicate the same
idea, 1is another case for semantic aralysis ir processing
natural language. A purely syntactic analysis, for exam-
ple, would find the following sentences differirg in sub-
Ject, prepositions used, and so on; while the mearing con-

veyed is virtually the same (except perhaps for which per-

sor is emphasized).

R S R P L ST R

N T e

oS SR

5

"Mary bought John a softball from Ted."
"Ted sold a softball to Mary for John."

There are manry English sentences for which our
gereral knowledge of "the world" is irsufficiert to allow
us to choose only one interpretation. The context would
(hopefully) allow us to determire which of the possible
irterpretations is most 1likely ¢tu be the ore that was
meant. One of the classic examples of this is the follow-

irg sentence.
"I saw the mar ir the park with a telescope."
Amonrng the possible irterpretatiors are:

1. I saw the man who was ir the park.

I saw him by using a telescope.

2. I saw the mar who was ir a park.

The park was the one with a telescope.

3. I saw the mar who was ir the park.

He had a telescope.

4, I am cutting the mar in half in the park.

I am using a telescope to perform this deed.

While reading the above 1interpretations, the
reader probably chose the interpretation he felt to be the

most 1likely one (hopefully, not the fourth). This

e N PN YO8 Jorty TP 5 L IOIR - D aa o

e e S

. e e i
R~ Yoo g N

6

choosing of alterratives was not guided by the syntax of
the sertence. Our knowledge of parks and telescopes help
guide us. We quickly eliminate the fourth alterrative
(although it could be an acceptable serterce, inr a very
strange horror story, for example). We may feel that the
first three are equally likely and would make a decision
among those three based on the context in which the sen-

tence appeared.

As a firal illustration of the need for a suffi-
ciently deep semantic component, the following sentence
was irput to a translator program, which translated it

irto Russian,
"The spirit is willing but the flesh is weak."

When the Russian was translated back into English, the

following was obtaired:
"The vodka is strong but the meat is rotten.”

The processing of natural language by computer,
then, demands that both the syntactic and semantic aspects
of language are dealt with. The structures through which
syntax and semantics are implemented in the RUS system
{Bobrow, 1978] are discussed in the remairing chapters.
Giver that such structures exist, however, the question

becomes: "How are these two comporents, syntax and seman-

tics, to be combired withir a single system?"

AT
SN 8

LT AT IR

Y
¢
H

7

Gererally, the gcal is to express syntactic con-
straints ir a gereral way while using semantic constraints
to guide the parsing. The design of the RUS System is a
synthesis of two approaches used in earlier nratural
language systems, the LUNAR System [Woods, et.al., 1972]
and the SOPHIE System ([Burton, 1976]. These two represent
two extremes inr the way syntax and semantics can be com-
bired ir a ratural larguage processing system. The RUS
System attempts to combine the best features of each while
minimizing their shortcomings. First, we will briefly

examire the two previous systems.

In the LUNAR System, the syntactic and semantic
components are completely separate ard each has its own
knowledge representation. There are no interactions
between them. In interpretirg a sentence, the syntactic
component first produces a parse using a grammar written
ir the Augmented Transition Network notation of Woods
(discussed in Chapter Two). The resulting parse tree is
then passed to the semantic interpreter which applies
semantic rewrite rules to the tree and produces the firal

interpretation.

There are two advanrtages to such a system. First,
that the syntactic and semantic components are distinct
allows separate modification of the two. Only the parse

tree format need be "standardized"™ as that is the only

e, iy S G

real interface betweer them. Second, the system has a
substantial ability ¢to <capture syntactic regularities.
Modifying the semantic component to allow a nrew sentence
to be interpreted allows mary syntactic variants of the

sentence to be "understood" as well.

However, there are also serious disadvantages to
this design. The most critical problem is the irefficier-
cy arisirg from the irability of the semantic "knowledge"
in the semantic component to guide the syntactic parsirg
process. The semantic interpreter car orly accept or
reject the syntactic parse tree. It canrnot indicate how
the parsing could be modified to produce an acceptable
structure nor can it guide the parsing process itself inr
ary way. Also, the semantic component has its own control
structure to scan the parse trees in order to determire
which rules are applicable. The complexity irntroduced by
this "pattern matching" process further reduces the

overall efficiency of the system.

At the other extreme, the SOPHIE System integrates
the syntactic and semantic processes to such a degree that
there ro longer remains a distinction betweer the two.
This "semantic grammar™ approach is a set of grammar rules
that, for each conrcept, characterizes all of the ways it
can be expressed in terms of other conrstituent concepts.

There 1is but one knowledge representation structure

W e e

9

encompassing both syntactic and semantic analysis. Clear-
ly, this representation allows semartic guidanrce of the
parsing process, and therefore, is an extremely efficient
methodology. In a system of this type, if the parser does
anything at all, it produces anr interpretation; i.e.,
there is no such thirg as a sentence that is parsable but

rot interpretable.

However, because of this complete merger of syntax
and semantics, when developing a semantic grammar for a
rew application domain, one ofter is not able to make wuse
of the existirg grammar. Even though the syntactic as-
pects of the rew grammar might be similar to the old,
because of the tightly merged rature of the representa-
tion, few of the similarities could be applied to this new
domain as well. Also, expanding the grammar semantically
to allow it to hardle a larger semanrtic domair will nrot
cause it to hardle syntactic paraphrases ir this new area
unless they are explicitly inrcluded. The power of "gen-

erality” of a separate syntactic component is lost.

The RUS System is an attempt to gain the modulari-
ty and ease of modification of having separate syntactic
ard semantic components while allowinrg interaction between
the two to a sufficient degree so as to gair the efficier-

¢y of havirg substartial semantic guidarce of the parse.

The structure that results is related to the ™"case

10

structure" approach [Bruce, 1975] to larguage ard makes
use of a valuable property of English (ard possibly all
natural larguages) referred to as "incremental parsabili-

ty".

The RUS System, then, is able to capture syntactic
regularities (by having separate syntactic ard semantic
components) and allow semantic guidarce of the parsing
process as well (by frequent semantic irteractiorn from the

syntactic component as it processes the irput).

The syntactic component consists of anrn Augmented
Transition Network (ATN) (Woods, 1973] that is compiled by
Burton's grammar compiler [Burton, 1976) and is described
ir Chapter Two. The semantic componrent is discussed ir
Chapter Three, while Chapter Four explains the operation
of the whole parsing process, inrcluding the irteractiors
between the two components. A detailed examiration of a
portion of the system is presented ir Chapter Five, re-
vealing the "meanings" of many of the states in the ATN
and illustrating an error message facility that would be
invoked when a sentence fails to parse. Chapter Six de-
tails the user environment of RUS: how to construct seman-

tic structures, interactive commands to aid the user of

the system, and so on.

Chapter Two

Syntactic Component

The syntactic component of the RUS System is a
compiled Augmented Transitior Network (ATN) ([Burton,
19761. The ATN formalism has been used successfully in
several natural language processing systems and has become
the standard representation for natural language grammars.
It has beenr argued that it is more efficient, powerful,

flexible and perspicuous than other formalisms [Woods,

19731.

ATN's are based on the abstractiorn known as the
Finite State Machine (FSM). A FSM is usually represented
as a directed graph which has a firite number of nodes,
each of which is labelled with a unique "state" rame. The
arcs between the nodes are 1labelled with symbols taker
from a finite irput alphabet. To process an irput strirg,
the FSM begins at a designated state (the "start state")
and examines the first symbol of the strirg. A transition
from <{state x> to <{state y> is made if and only if there
is an arc from <{state x> to {state y> whose label is the
same symbol as is currently being examined. If such an

arc exists, the transition to <state y> is taken anrd the

11

(RN o

Mt2 2354 Ve M

s
o

e T

R

N e g g

T .,

TR ¥

ey

R TR T SRS,

D e e

12

irput symbol is "corsumed" (i.e., removed from the irput

strirg). The strirg is accepted by the FSM if the machire

stops in one of its pre-desigrated "final" states and the

entire irput string has been corsumed; the strirg is re-
Jected otherwise. Finite State Machires accept the class

of regular larguages.

The ATN is a FSM that has beer modified ir two
ways. The first modification is the additior of a recur-
sion mechanrism; this new formalism is known as a Recursive
Transition Network (RTN). In the graphical representa-
tion, ar arc may now also have a state name as its 1label.
As in the FSM, {f ar arc is labelled with a symbol from
the input alphabet, the transitior 1is made |if the
"current" symbol is the same as the label. However, if an
arc is labelled with a state name,lthe trarsitior is made
only if a substrirg (begirning with the "“currenrt" symbol)
can be accepted by the RTN, where processirg the substrinrg
begins at the state rame given on the arc. That is, for
the transition to be made, a "sub-machinre" whose iritial

state is giver by the arc label must accept a substring

whose first symbol {s the "current" one. The addition of
this recursion mecharism brings the power of the transi-
tion network up to that of a pushdown store automaton.
Recursive Transition Networks accept ¢the class of

context-free grammars.

Bk, ST Y s sy e

———— e e —— LAt . _

13

The second modification made to the FSM formalism
is the addition of registers. Now, ir additiorn to symbols
from the irput alphabet and state names, arcs may also
have ary number of register setting operatiors and arny
predicate (which may examine the contents of any of the
registers). A transition will now be taker onrly if the
predicate evaluates to "true"™ and all of the conditions
for a state transition in a RTN are satisfied. When a
transition is taken, the register settinrg operations are
performed. The registers may be used to hold any arbi-
trary 1list structure. Also, immediately before a recur-
sive trarsition is made as described above, the current
register values are saved and a rew set of registers is
created. The nrew registers are iritially empty unrless
they are initialized to some value by the register settinrg
operations on the arc that iritiated the recursion. When
the "sub-machine" accepts the substrirng, the value associ-
ated with acceptanrce of the substring is returned and the
original register values are reinstated. The saving and
restoring of the register values may be thought of as
pushing the values on to ard poppirg the values off of a
stack. (In fact, the recursive call is made through a
PUSH and <the recursior ended via a POP, as is discussed
below). The Augmented Trarsition Network, then, is a Fin-
ite State Machine with two additions, recursion (givirg us

a Recursive Transitior Network) and register settirg

P 3¢ 1l eI

i

»
!
¥

TR YA L e

A ACYTIF Wy RIS

!

14

operations along with predicates. ATN's are equivalent to

the class of automata known as Turing machines.

The Augmented Transition Network used ir the RUS
System syntactic componert is based or the ore described
by Woods. As mentioned previously, to improve efficiency,
the ATN is compiled and executed (as opposed to beirg
interpreted). Rather than allowing ary formulation of
arcs, special arcs were desigred to increase the ease with
which ATN's may be written (ard understood) by the user.
The RUS ATN utilizes six "types" of arcs, each of which

are described below.

(WRD <word or list of words>

{condition><action>®*(TO <state>))

In the WRD (word) arc, the first word of the irput
string 1is compared to the <word or list of words>. If
there is just onre <word> in the arc, the two are compared;
if there 1is a <list of words>, the word from the irput
string is compared with each word ir the 1list wuntil a
match is found or the list is exhausted. In either case,
if there is a match, the <condition)> is evaluated. If it
is "true" (i.e., evaluates to a LISP noneNIL value), then
the <action>®* is performed. The star (®*) in this notatior
is the Kleene star and indicates ar arbitrary number (pos-
sibly zero) of items. Hence, <action>® represents zero or

more actions. The actions may be register setting

e s e e —————— e

PR

PR

e

S W) A < XS < RO

T e S e i

15
operations, calls to the semantic componrnent (as discussed
ir Chapters Three and Four), or invocations of special
actions which change the standard flow of control (as is
discussed later in this chapter). Firally, the TO action
causes the transition to be made to the specified <state>

in the retwork.
(CAT <category><condition><action>*(TQ <state>))

The CAT (category) arc is similar to the WRD arc
except that the syntactic category of the irput word
(which 1is found inr the word's entry in the dictiorary) is

compared with the category named by <category>.
(JUMP <state><condition><action>%)

The JUMP arc allows transition from one state to
arother without consumption of the irput. If the <cordi-
tion> evaluates to a non-NIL value, the <action>®* is per-
formed anrd a transition is made to state <{state>. Sirce
none of the input string is consumed, the state to which
the transition is made may be thought of as a contiruationr
of this state. 1In other words, the JUMP arc allows states
to be structured in a way that may make the overall design
of the ATN clearer, but it is not a nrnecessary arc to have.
Any ATN with JUMP arcs can be rewritten to an equivalent
ATN without JUMP arecs. However, the state structuring
freedom it allows is helpful 1in makirg the ATN more

fikond B A4 bl ot it L oy

™

S W L e T

Rl s

L&

FERtTe Sy oy

ST WS AT 1

T IR Y TP <

P TRAY R e 1 %

organized.

(PUSH <state><corndition>(!<actiond>®)

Caction>#*(TO <state'>))

The PUSH arc 1is the recursive mechanism for the
ATN. If the <conditior> is true, a recursive transition
is made to state <state>. The originral register values
are saved and a new set of registers are irstantiated.
The actions preceded by the exclamatior poirt are "preac-
tions"; they are performed before the tramsition is takern
and typically assigr values to the otherwise empty "new"
registers at the lower level. When the substring is ac-
cepted by the subnetwork (if, indeed, it is) ther the ori-
giral register set is restored and the acticnrs (other thar
the preactions) are performed, ending with the trarsitior

to state <{state'>,
(POP <form><conditiond<actiond¥)

The POP arc indicates a firal state. If the <con-
dition> is true, the actions are performed ard the <form>
(a LISP expression) is evaluated. Its value is then re-
turned to the PUSH arc that began the series of states
that ended with this POP. The register values at this
level are discarded and the origiral values reinstated

before the return to the PUSH arec. The execution of a POP

at the top 1level of the ATN indicates that the irput

17

string was accepted (i.e., we have a successful parse) as

long as the entire irput string has been consumed.
(VIR <constituent rame><conditiond<actions>*(TO <state>))

The VIR (virtual) arc is used in corjunction with

the HOLD actionrn (described later in this chapter) to har-
dle displaced constituerts. If a corstituert of the type

<constituent name> has been placed on the hold list by a

L t previous HOLD action, and the <{condition> is true, ther
the constituent is removed from the hold list, the actiorns
: are performed, and the trarsition is taken to state

{state>.

In addition to these six arc "types", the RUS ATN

has a GROUP "super-arc". It has the followinrg form.
(GROUP <are 1>.....<arc nd>)

The GROUP structure groups ary number of arcs
within ary state together. As soon as the first state
transition via one of the GROUPed arcs succeeds, none of
the other arcs within the GROUP are tried. When arcs
within a state are not GROUPed, the parser must provide
back-up to that state. In mary cases, though, there are
states ir the ATN that are not non-deterministic branch
points, That is, there is at most one arc from that state

that ary given sentence can traverse. The GROUP arc al-

lows the arcs 1in that state to be combinred inr order to

-

AL

el

P T RIDTA V2 o, AR5 TR W

v AT 2 TR

18
signal the ATN Compiler that the state 1is actually a
deterministic "choice-point"™, not a potential "branch-

point". Any number of arcs within a state may be GROUPed.

The six arcs described above, along with the GROUP
"super-arc™, are. the building blocks of the ATN. While
the arc types and conditions constitute the primary flow
of control mecharism ir the ATN, the actiors withirn the
arcs actually build and manipulate the structures that the
parser outputs. Some c¢f the more commorn actions are

described below.

The registers are the main mode of communication
in the ATN. A state may set the values of certain regis-
ters to indicate what "knowledge" it has about the irputy
the values may then be examined at the next state to
determine the flow of control from that point. Thus, an
action that sets register values is among the most basic

(and necessary) actions in ar ATN.
(SETR <register> <form>)

The SETR (SET Register) action sets the register
{register> to the value of the expression <form>

(described below).

When a PUSH arc 1is taken, a new set of (empty)
registers is created. The SENDR preaction allows the set-

ting of a register at the lower PUSHed level from the

present level.
(! (SENDR <register> <formd))

The SENDR (SEND Register) preactior is like SETR, except
that the <register> is not set at the current level, but
one level down, in order to iritialize a register for the

"sub=-network" that was PUSHed.

(ADDR <register> <form>)

(ADDL <register> <form>)

The ADDR (ADD Right) and ADDL (ADD Left) actions
modify the value of <register> by addirg the value of
{form> to the left or the right of the list that is the
current value of <register>. The ADDL action may be
thought of as a LISP CONS with the value of the <form> as
the first argument and the current value of the <{register>

as the second argument.
(HOLD <form>)

The HOLD action is used in conjunetion with the
VIR arc to handle displaced constituents. This action
places the value of the -expression <form> or the hold
list. As described earlier inr this chapter, the VIR arc
examires the hold list to see if there is a constituent of

"a particular type (NP, PP, etc.) being held.

Some of the more frequently used types of <form>s

g am ey e g
T, Y p .

e e 0

20

ir the above actiors (arnd inr the POP arc) are described

below.

(GETR <register>)

GETR (GET Register) returns the value (contents)
of the register <register>. (SETR <reg 1> (GETR <reg 2>))
would set the contents of <reg 1> to be equal to the conr-

tents of <reg 2>.

The <form> "#" is essentially a special register
that poinrts to the current item being scarred. If the "#&"
appears in an action of a PUSH arc, or ir a corditior or
an actior of a VIR arc, then its value is the result of
the embedded computatior (if a PUSH) or the conrnstituent
being removed from the hold list (if a VIR). Otherwise,
the "*" has as its value the root form of the currently
scanned word of the input sentence. LEX is a <form> whose

value is the current input word itself.

(BUILDQ <template> <argument list>)

BUILDQ is the basic data structure construction
{form>. As the parse proceeds, the system records its
findings ir registers. These "findirgs" are LISP data
structures of some complexity; BUILDQ is the primary data
structure builder. Depending on the <template>, the ele-
ments of the <argument list)> are treated ir various ways,

as shown below.

me——

4

PR e sUb

7

- A g

iy g

haut

21 r

TN 'f,-rrvm -'.

Template Element Interpretation

Replace with the value of the
corresponding member of the
<argument list>

* Replace with the "currenrt"
structure 1
+ Use the corresponding member F

of <argumenrt list>
(unevaluated) as a register
rame

! Replace with an expression
equivalent to the value of
the <argumenrt list> minus one
outer layer of parentheses

Tt e

1! Same as ! above except that -
it modifies the <argument list> f
member ;

As an illustration of BUILDQ, if register HEAD has]
the value "ALUMINUM"; the variable CLASS has the value J
"NOUN"; the variable XIND has the value "(MINERAL)"; and

the current irput word is "SAMPLE", then

(BUILDQ (HEAD + CLASSIFICATION # MATERIAL
! # THING *) HEAD CLASS KIND)

would return the following form as its value:

(HEAD ALUMINUM CLASSIFICATION NGUN
MATERIAL MINERAL THING SAMPLE). H

In addition to the register-setting actions above,

there are four actions which influence the flow of control

of the ATN. The ABORT action causes the present

bl

22
configuration (parse path) to be stopped, and an alterna-
tive tried. The SUSPEND action provides a way to chanrge
the "weight" (likelihood of success) of the current confi-
guration. This causes the configuration to be removed
from active "status" and placed on the alterratives list.
The most recent alterrative with the best "weight" (possi-
bly this same one) then becomes active. The RESUME action
allows a lower level network that has already popped to
resume processinrg input words from a later place ir the
input sentence (for handlinrg extraposition). The RESUME
simulates a PUSH to (recursive call of) the named state.
The WAIT action is similar to the SUSPEND actiorn except
that the configuration "weights" are rot charged. All
alternatives are tried during the WAIT time. If no path

was successful, then the "delayed" configuratior contin-

ues.

In addition to all of the actions described above,
calls to the semantic component are also among the possi-
ble actions in an arc. The next chapter describes the RUS
semantic comporent; Chapter Four details the operation of
the parser ircluding how and where these semantic calls

are used to guide the parse.

- T I A R Y R I R

Chapter Three

Semartic Component

The semantic component of the RUS System 1is ex-
pressed ir the form of a "case frame dictionary". The
semantic "knowledge" in the dictiorary 1is retrieved ard
processed through the use of a set of functiors (described
later ir this chapter) that may be thought of as forminrg a

"case frame interpreter".

The case structure concept has beenr successfully
used inr a number of natural language processing systems
(Bruce, 1975]. The fundamental idea is that each word has
a certair fixed number of relationships with octher words;
it can play orly certair roles in a senrtence. Which roles
(or relationships) it fills depends on the context ir

which it appears.

The "case-oriented" semantic interpretation rules
of the RUS System are associated with those words that car
be HEADs of a syntactic unit (the mair verd of a verd
phrase, the main noun of a noun phrase, etc.). The ra-
tiorale for definirg rules for the HEADs of phrases is the

way the overall syntactic/semantic parsirg process

23

W—wrw —— o v m———— B i ¥ o o

24

operates. The semanrtic "checks" are made orn a syntactic
unit using the HEAD of the unit as the main element.

Also, the cases of any word must be chosen from a list of r

available "case keys" [Mark, 1980]. These are syntacti-
cally determined keys, since the ATN must supply them.
The parsing process, including the syntactic/semantic
irteraction, is discussed ir detail 1ir the following

chapter.

The case frame for a word is placed or the word's
property list under the CASESTRUC property. Ar inrdividual

case frame may be related to other case frames (i.e.,

semantic "knowledge" about other words) through an "inher-
itance" network. The form of the case frame determinres

the type of inheritarce, if any.

Every case frame is either a list of clauses or a

single atom. There are two types of clauses that can

appear in the 1list-type case frame. The first kird of
list-type clause defines a "case slot". This contairs a
"case key" (or list of "case keys") followed by a list of
actions to be performed. The case key identifies the kind
of slot. There are approximately thirty-five different
slots Tor nouns, verds, and prepositions. They are listed
along with examples in the General Motors Report [Mark,
1980]. The actions to be performed are semantic tests,

which check the validity of the syntactic constructs being

car

25

proposed to fill the slot, and register assigrments, which

implement the semantic interpretation of fillirg the slot.

The second kind of list-type clause consists of a
special atom (®*V®* ®#PPCASES®, ®PREMOD*, or ®*POSTMOD¥*) fol-
lowed by the rame of another dictiorary ertry. This indi-
cates the sharing of case frames. It allows the current
case frame to continue, usinrg the cases of the entry named
after the special atom. The special-atom/dictiorary-entry
statement may also be used as the last actior withirn a
clause. In that case, the currenrt slot cortinrues usirg

the cases of the named entry.

If the whole case frame is just a sirgle atom,
ther complete sharirg is indicated. The atom must be the
rame of a different dictiorary entry; it indicates that
the case frame of this word is exactly the same as that of

the named word.

These forms provide explicit linking betweer dic-
tiornary entries. Words inr the application domain are
"semantically similar" if they are corrected ir this 1in-

heritanrce network.

Another kind of inheritarce ir the dictiorary is
the SUPERC link. This allows the dictionary to be divided

into a hierarchy of classes. If "percil®™ has a SUPERC

lirk to <writirg-utenrsil>, thenr "pencil" is ir the class

5

e

a7 R LT T R Y S

e T

P e e aper—s

26

{writing-utensil>. (Words within the brackets are classes
of objects. Their dictiorary entries are of the exact
same form as those for words.) In addition to defirirg
the class relationships of words (or other classes),
SUPERC can define the class relationships of phrase struc-
tures as well, SUPERC wuses the FRAMETYPE of a phrase
Structure to represent it ir the hierarchy of classes.
FRAMETYPE 1is a semantic register that is set by the case
frame of the HEAD of the phrase. This 1is ar extremely
powerful ard wuseful facility, since it allows groups of
words (rot just single words) to participate in the irher-
itance nretwork. Therefore, conrcepts that can orly be
expressed in more than ore word can still be a part of the
retwork. As there are mary such concepts ir Erglish, this
is ar importanrt feature in a knowledge representation
scheme. Semantic "knowledge" about dictiorary entries
(words and concepts), then, can be shared partially, ¢to-

tally, or withir a "subconcept-supercorcept" relatiorship.

Each case frame is listed under onre of six "pro-

perties” that are withir the CASESTRUC.

PREMODCASES (for nours)
POSTMODCASES (for nrouns)
PPCASES (for prepositions)
ADVERBCASES (for adverbs)
DETERMINERCASES (for determiners)
VERBCASES (for verbs)

These "case types" are used by the semantic function calls

withir the ATN to specify which set of rules are to be

27

used. The calls will also specify the slot type. These
two pieces of inrformatior determire the set of actions

that will be carried out.

A RUS-orierted 1lexicor was not available to us;
however, another lexiconr with a few simple "default" se-
mantic rules allowed us to parse simple phrases. Ar exam-
ination of these CASESTRUCs will give the flavor of the
rotation; they are so basic as to be almost mearingless as

examples of "semantic" rules.

(<KNP>
CASESTRUC
(PREMODCASES ((HEAD (T (<= HEAD %))
($ (T (E_- CASEKEY *))))
POSTMODCASES (($ (T (E_- CASEKEY *))))
DETERMINERCASES ((3$ (T (<= DETERMINER (BUILDQ
(DETERMINER CASEKEY #
DETERMINER *)
CASEKEY)))))))
(<vp>
CASESTRUC
(VERBCASES (((HEAD SUBJECT OBJECT INDOBJ POP
NEG POSTRULES)
(T (E<X= CASEKEY *)))
($ (T (E_- CASEKEY $))))))
(<PP>
CASESTRUC

(PPCASES (($ (T (E<= CASEKEY %))))))

Three kinds of case slots are illustrated. A sin-
gle case key=-ed slot (the first slot of <NP> PREMODCASES),
a multiply case key-ed slot (the first slot inr <VP>
VERBCASES), 1indicating that the rule is to be applied if

the case key is among those listed, and a "catch-all" (the

ngn slots) slot which is applicable regardless of the case

gz

B e ey e e

s e

28

key.

Following the case keys is the list of actions to
be performed. If ary ir the list are unable to be per-
formed (NIL in value), then no assigrments are made usirg
that particular set of actions. Another set of actions

may be applied (if there is a "§" rule).

The first "action" inr each of the above examples
isvmyge trivially true "T". The second actior ir each is
an assi;;aiﬁt of the structure that was given (to be put
in a slot) to a "semantic register". The two registers
HEAD and DETERMINER are explicitly nramed; irn the others,
the value of the case key that was requested by the syn-
tactic component is the name of the register to be filled.
Notice that the structure assigrmenrt functions begir with
"E" when used with CASEKEY and do not when the register is
explicitly named. The "E" indicates that the first argu-
ment (CASEKEY) is to be EVALuated to determire the rame of

the register to which the assigrment is to be made.

The five "assigmment operators" all assigr a value (a
list structure represerting an irterpretation) to a regis-
ter. However, they differ in the way the structure is
treated (listified, i.e., placed 1inrside a pair of
parentheses, or not) and in the way the register takes the

4
assigrment (replace or append) as shown below.

g
;
P

29

structure to be assigned register it is assigred to
<= nrot listified appended
_- listified appended
{== not listified replaced
<<=z not listified replaced
<= not listified register is set to NIL if it

was already assigned a value

No distinction in the way the "“operators" <=z and <<=z=
make the assigrment was found by me. The "assigrment
operators" _-, <=z, and <== have "E" equivalents (E_-, E<=,
and E<==) that EVALuate the first argumenrt. This allows a
structure to be assigned to a register (usually given by
the value of CASEKEY) without the name of the register

being explicitly written in the CASESTRUC rule.

The semantic "knowledge"” in the system, then, is
represented by the case frames as described above. The
"case frame interpreter" is a set of functiors that re-
trieve and process this semantic "knowledge." The top
level functions that assign a semantic interpretation to a
phrase are called from the ATN. (Where this is donre 1is
discussed ir the following chapter.) All of these func-
tions are similar to the function ASSIGN.

(ASSIGN

{component> <casehead> <key> <casetype>
{notassignflg> <syntaxcasekey>)

{component> the phrase to be put in a slot
{casehead> the head of the phrase

<key> the CASEKEY

{casetype> one of the six properties:

POSTMODCASES, VERBCASES, etc.
<notassignflg> if non=-NIL, no register assigrments
are made

EEre ey

T m———~

30

{3yntaxcasekey> a more general CASEKEY; used with
<key> to make a "ror-standard"
CASEKEY
When the ASSIGN function is called, the case frame
of <{casehead> 1is searched for the CASESTRUC property
{casetype>. If the property is found, the list of slots
is retrieved. The slots are then searched (by examiring
the case keys) to see if ore is of the type <key>. 1If the
appropriate slot is found, the tests ard register assign-
ments are executed. If ary of them canrot be successfully
completed (return nrorn-NIL), then the assigrment fails at
that slot and all of the actions that were successful are
undone; however, processing of the frame cortinues as
there may be another acceptable slot to try. If all of
the actions are successfully completed, ASSIGN returns a
value of "T" (true) and the register assigrments are made;
{comporent> has been successfully placed ir a slot, 1i.e.,

it has been "understood”.

If the above process fails because of the abserce
of an applicable slot, then the HEAD word carnot have the
suggested relationship with any phrase. If it fails be-
cause all of the actions in ar applicable slot could rot
be successfully completed, then the HEAD word carrot have
the suggested relationship with the particular phrase

{component>.

Gererally, the presence or absence of a slot and

31

the tests (within the actions) of a particular slot embody
the semapntic "knowledge" of the applicatior domain. The
semantic checking of the RUS System is totally concentrat-
ed irto the case assigrment process. To move to a new
application area, then, the user must defire the words in
the new domain by choosirg slots, defiring semantic tests
to determire which concepts car fill a slot, and conrn-
structing register assignments that reflect the fillirg of
the slot by the concept, i.e., that the concept was "un=

derstood”.

The ASSIGN and ASSIGNQ functions are the inrvokirg
functions of the "case frame interpreter". The remairing
portion of this chapter describes the case structure ac-
cess and manipulation functiors which the two use to as~
sigr a "meanirg" to a phrase. They are wusually called
only by ASSIGN and ASSIGNQ and their sub-functions, not
from within the ATN.

The functiorns ASSIGN and ASSIGNQ differ orly
slightly. ASSIGN calls the function GETKEY which returnrs
the 1list of actions in the requested case structure slot.
ASSIGN then takes this result along with its <component>,
<key>, and <notassignflg> parameters anrnd invokes the func-
tiorn ASSIGNCASEbyKEY. (In other words, GETKEY retrieves
the appropriate case slot ard ASSIGNCASEbyKEY "executes"

it with the giver component.) ASSIGNQ alsc does the

-y
ol

i)

- T e e e P AT1 R P 17 S

32

above; and, in addition, places the value of <componertd>
ir the register SYN/SUBJECT if the <key> is SUBJECT or in
the register SYN/OBJECT 1if the <key> is OBJECT. If the
<key> is neither of the above, then ASSIGNQ 1is identical
in actiorn to ASSIGN, -except that the third argument of
ASSIGNQ is QUOTEd, i.e., not EVALuated.

The function GETKEY retrieves the list of actions
from the appropriate case slot by wusing the functions
GetPATH, GetINHERITEDCASE, and FINDKEY. €Each of these are

discussed below.

The functior GetPATH takes a list as its argument.
The CAR (first element) of the 1list is EVALuated; the
function GetPATH1 is then called with the EVALuated CAR as
the <gramitem> and the CDR (remairing elements) of the

list as the <searchlist>.
(GetPATH1 <gramitem> <searchlist>)

GetPATH1 can be used to returnr the value of a par-
ticular property of a structure. This means that <grami-
tem> (perhaps the contents of a particular register) is
searched for the value of its <{searchlist> property.. For
example, if <gramitem> is ‘(HEAD NOUN ALUMINUM LEX
ALUMINUM NUMBER SG) and <searchlist> is ‘NUMBER, then the
call to GetPATH1 will return "SG".

GetPATH1 can also be used to find the Nth element

T R N T R R e Y s —

RN ACT

¢
|3

33

of a 1list. This means that <{gramitem> is searched to fird
its <searchlist>th element. For example, if <gramitem> is
the value of a register such as PREMODS, which may hold
any number of premodifiers of the head nroun, and <sear-
chlist> 1is 1, then the call to GetPATH?1 will returr the

list that represents the first premodifier.

GetPATH1 can also be used to returnr the value of a
word's CASESTRUC property. This means that if <gramitem>
is a <word> and the <searchlist> is (: <property>), then
the value returred is the value of the <property> property
under the CASESTRUC of the word <word>. If the searchlist
is (:E <property>) then <property> is EVALuated first to
get the property name. For example, if <gramitem> is
'SHOW and <searchlist> is '(: PREMODCASES), then GetPATH1
will return the PREMODCASE CASESTRUC for SHOW.

Any (or all) of the three ways of using GetPATH1
described above can be combired by placirng the <sear-
chlist> elements together into a "super" <searchlist).
Begirning with the first <(searchlist> element, the value
determined by the element is found (as described above)
and is used by the next <{searchlist> element. This left-
to-right evaluation continues until the last <searchlist>
element 1is used. For example, if <gramitem> is 'ALUMINUM
and the <searchlist> is '(: PREMODCASES 2), ther GetPATH1
will return the second slot irn the PREMODCASE CASESTRUC

-y

34

for ALUMINUM,

In GETKEY, GetPATH is used to "reduce" a register
value to its HEAD word and to fird the word's gereric

class (<KNP>,KVP>,etc.) if necessary.

The functior GetINHERITEDCASE is also wused in
GETKEY.

(GetINHERITEDCASE <frame> <case>)

Get INHERITEDCASE returns NIL if there is nro CASESTRUC for
the word <{frame> or if the CASESTRUC has nro rules urder
the property {case>. Otherwise, it returrs the entire
"rule set" listed under the property <case> of <framed>'s
CASESTRUC. For example, (Get INHERITEDCASE 'SYSTEM
'PREMODCASES) will returr the PREMODCASES CASESTRUC for
the word SYSTEM or NIL if there is not a PREMODCASES
CASESTRUC or no CASESTRUC at all.

The furnction FINDKEY is also used ir GETKEY.
(FINDKEY <key> <searchlist>)

FINDKEY returns the 1ist of actions under the <key> case
key from the <searchlist> "rule set". The <key> is the
case Kkey being searched for anrd <searchlist> is the value
of one of the caseframe properties (POSTMODCASES, etc.).
The {searchlist> is the result of a call to

Get INHERITEDCASE described above. FINDKEY looks for the

35

appropriate "actior 1list" in the followirg way: while
there is still a rule to be examired, its first "element™
is checked. 1If it is one of the special indirectior atoms
(*PREMOD®*, *y*% etc.), then the new set of rules is re-
trieved by calling GetINHERITEDCASE for the word nramed
after the special atom. Otherwise, if the first "element"
of the rule is equal to "$" (the special "any-case" sym-
bol) or the given <key> or if the <key> 1is among those
listed in the first "element" of the rule, then the rest
of the rule is returned as the value of FINDKEY. 1If nonre
of the above are true, then the process is repeated for
the next rule. This process is repeated until ar applica-
ble rule 1is found, or the "rule set" is exhausted and a

NIL is returnred.

GETKEY uses GetPATH, GetINHERITEDCASE, and FINDKEY
to retrieve the appropriate "action list" ir the following

way.
(GETKEY <key> <word> <keytype>)

It first calls GetPATH as many times as necessary to get
to the sirgle word that is the head of the structure
<word>. Then, a <call to GetINHERITEDCASE and FINDKEY
using <key> and <keytype> (<keytype> to specify the
CASESTRUC subproperty to GetINHERITEDCASE) will result ir

the "action 1ist" requested or NIL. If the result is NIL,

the process is repeated with a call to GetPATH to find the

e " , e -

36

generic <keytype> defirition of the word <word>. Usirg
the current lexicorn, this means, for example, that the ;
PREMODCASES CASESTRUC for <NP> will be used irstead of the 2
one for ALUMINUM, because one for ALUMINUM has not been 3

written. That is, the invokinrg of GETKEY via

(GETKEY “HEAD “ALUMINUM PREMODCASES)

will cause the following:
1. Sirce the <word> is not a 1list,
GetPATH is not called.

2. GetINHERITEDCASE is called and returns
NIL, since there is no CASESTRUC for
ALUMINUM.

3. FINDKEY uses the result from
GetINHERITEDCASE to find the appropriate
"action 1list", but since that result was

NIL, this result is NIL.

4, Because the first call to FINDKEY was
NIL, the two functions are called agair,

below.

5. Get INHERITEDCASE 1is called, but this

time, using the generi¢c <NP> instead of

the word ALUMINUM, (This was found via
GetPATH.) The PREMODCASES of <NP> are

37

returned as the result.

6. FINDKEY uses this result, searching
through it for an "action list" under the
HEAD case key. It is found and returned
as the value of FINDKEY and, therefore,
the value of the call to GETKEY itself.

GETKEY, then, is the function that retrieves the appropri-
ate "action list"™. The ASSIGN (or ASSIGNQ) function can
now call ASSIGNCASEbyKEY to ¢try to make the "semantic
interpretation" assigrment.
(ASSIGNCASEbYKEY <casekey> * <caseframe>
<noassignflg> <leftaddflg> <resetusedregs>)
The arguments to ASSIGNCASEbyKEY have the follow-

irg meanings:

<casekey> the <key> from ASSIGN
* the <component> from ASSIGN
<caseframe> the "action list" returred from
the call to GETKEY
<noassignflg> the <rotassigrflg> from ASSIGN
<leftaddflg> (not used by ASSIGN)
{resetusedregs> (not used by ASSIGN)

To summarize the progress of the assignment action up to
this point, the appropriate "action list" has been found.
We now want to evaluate the list, hopirg that all tests
and actions are successful so that the assignrirg of anr
"interpretation” to the <{component> under this HEAD word

can be made.

ASSIGNCASEbYKEY proceeds by examirirg the first

e

LR - et s e

.

38
"element" of the "Maction 1list". If this is ore of the
special indirection atoms (®PREMOD*, #V¥* atc.) then the
{caseframe> becomes the one for the word ramed after the
special atom. In other words, the "actior 1list" is now
the appropriate one for the ramed word. (This is dore by
calls to FINDKEY and GetINHERITEDCASE.) The procedure 1is
re-started (by using the CLISP "while") so as to allow ary
number of indirections before a real "action 1list" is
found. Once one is found, a "T" is returned orly if one
of two conditions are true:
1. All of the actions evaluate to non-
NIL. (This is the usual successful situa-

tion) or

2. The ACCEPT/IT/FLG is "T" (it is "T" if
not changed), and the componert to be
assigned (®*) {s a 1list, and either 1its
FRAMETYPE is <DUMMY> or <ELLIPSIS> or it
has more tharn one HEAD sublist and the
first HEAD is a PRONOUN.

Otherwise, the value returned by ASSIGNCASEbyKEY to ASSIGN
(or ASSIGNQ) is NIL.

The functions described above are the primary
functions of the semantic comporent. Some of the other

functions (most of which use these) are briefly described

below.

O O U S Y SN S

39

ASSIGNDET uses GetPATH and ASSIGNQ to construct
the total determiner structure ir DET and check it semant-
ically to be sure that it can be the determirer with the
HEAD noun.

ASSIGNVERBCONSTITUENTS takes a 1list of adverbs,
question-adverbs, adjuncts, and other constructs and then
calls ASSIGN with the HEAD verb (and VERBCASES) for each
ore.

BuildDET builds the structure that represents the
determiner by combiring the articles, possessives, quanti-
ties, ordinals, superlatives, simple determiners, and
nregative determiners.

BuildPP builds the structure that represents the
prepositional phrase. It uses ASSIGNs to be sure that the
head preposition, the prepositional object, and the prepo-
sition within the phrase (if any) all check semantically.

InterpBNP interprets the base noun phrase by cal-

lirg ASSIGN for each of the premodifying phrases.

There are also fifty-six GRAMTESTFNS (grammar test
functions) that are wused ir the corditions of the ATN.
These functiors perform "lookahead", i.e., check to see if
certain syntactic constructs (words or phrases) could be
rext, and check the features of the words that the ATN

encounters. These grammar test functions add a great deal

of power to the condition checking on the ares of the ATN.

e e LR B Fa ™ o T T T

SRS g VPR

Pt e A

40

Ir summary, the semantic component of the RUS Sys-
tem consists of special data structures that represert the
semantic "knowledge" about words in the applicationr domain
(the "case frames"), and a group of functiors that aralyze
this "knowledge" to produce the register assigrments that
represent the "understandirng™ of the input (the 'case

frame interpreter").

TS e TN SR Y

T e Y e AT

g
_
¢
?
g
&

Chapter Four

Parser Operation

The two preceding chapters described the syntactic
and semarntic components of the RUS System in detail. Each
comporent was explained while avoiding a discussior of the
other as much as possible. The RUS System parses a sen-
tence, of course, using information from both comporents.
This chapter describes the overall parsing process: nhow
the ATN deals with alterrative paths, the RUS parsing
"strategy", features to improve efficiercy, the 1lexical
prepass, the irteractions between the two comporents, and

the firal output of a successful parse,

The ATN grammar compiler produces code that
traverses the ATN using a depth-first control structure
(Burton, 19761]. At any given state, the arcs are tried
one at a time in the order that they appear there. The
first arc that succeeds is taken and an alterrative "con-
figuration" (which will try the remaining arcs) is pushed
onto the alterratives stack. 1If a "configuration" blocks
(i.e., none of the arcs leaving the state succeed), then
the top "configuration" orn the alternatives stack is iri-

tiated. (The "nrormal" control structure of the ATN as

41

o PR T8 ok, WIS, SO W AR TEN 7

-7

AT PGP T

e)

| 42]
described above can be altered through the use of the spe-
cial actions ABORT, RESUME, WAIT and SUSPEND as discussed
in Chapter Two.) A "configuration™ is a data structure
that completely characterizes the state of the processinrg. g
A typical "configuration” might contair the following:
Configuration Number unique to this configuration; used
to identify it ir paths, an
alternative lists, etc.
State identifies the state 1ir the
grammar being examired and also

indicates which are withirn that
state is under consideration.

Node a pointer to the irput.

Stack a pointer to higher 1levels of the
ATN that PUSHed to the present
level.

Regs a pointer to the list of registers

available to this corfiguration.

Feats a pointer to a 1list of feature
registers.

Hold the hold list of cornstituents that
are still unassigred.

When transitions are made from state to state,

only a few registers are usually changed. Each corfigura-
tion must "know" the values of all of the registers; but
storirg all of the register values with each configuratior
would take up a great deal of memory. To handle this, the
register-name/register-value pairs are stored on a "forked
stack". This is a merged 1list data structure where the
register values common to a group of configurations are

stored once, and those specific to a particular

43
configuration are stored with a pointer to the "common"
list. Thus, orly the pointer to the beginnirg of a
configuration's register 1list is needed to obtair a com-

plete record of the current register contents there.

The goal of the whole parsing process, of course,
is to produce a representation of the interpretation of a
phrase by representing the interpretationrs of its syntac-
tic units 'and the relationshibs betweer them. The ques-
tion 1is: l"pan the interpretation of a phrase be built up
from inperpretations of 1its ‘'parts' as the parsing
proceeds, or must all of the 'sub-interpretations' be made
before an overall interpretation canr be?" That is, either
syntax or semantics (or both) may be "wholistie" rather
than "incremenrtal"” processes. The results obtaired inr the
RUS System indicate that English is, to a large extent,
able to be parsed (and interpreted) ir an ircremental,
left-to=right way. There is a large class of syntactic
relations which can be determired ircremenrtally; anrd these
are sufficiert to provide the necessary informatior to
semantics. That is, as the syntactic role of a consti-
tuent in the total unit is determined, the semantic ir=-
terpretation is constructed. The two processes are close-
ly 1linrked, not only because the semantic component uses
the results of the syntactic comporent ircrementally, but
also because the ability of the syntactic comporert to

assign syntactic roles without corsiderirg the roles of

.,___,-

A

‘1

44 _,
all other conrstituents is based on its ability to "check

with semantics™ to see whether or not a possible syntactic

assignment "makes sense". There are some pheromena in :
English that cannot be handled ir a strictly incremental }
; way (such as extraposition), but they are able to be har- i
dled by simple extensions to the incremental scheme (VIR !;

arcs and HOLD actions).

Four major features have beer added to the basic
ATN structure 1ir an effort to increase the efficiency by
making the parsing process as determiristic as possible.
The amount of non-determinism is reflected (partially) ir
the amount of back-up that occurs wile parsing a sentence.
The Dbasic ATN structure is a non-deterministic mechanism;

each arc traversal is thought of as a "branch-poirt" - the

parser must be able to back-up and try alterrative paths.
A truly determiristic parser regards each state as a
"choice-point", where a (correct) choice must be made,

without allowirg back-up to that state.

The first added feature is the GROUP arc. As dis-
cussed in Chapter Two, this allows the grouping of arcs

within any state intoc a deterministic "super-arec".

The second added feature is "look-ahead". At many
points in a typical ATN, there is the possibility of a
certain type of constituent that will, therefore, be
PUSHed for,. That. this constituent type is expected is

Bt akatise.

- o, 1 a -

45

usually based only or the structure that has been found so
far. However, such a PUSH should be avoided if the
current word (or the next few words) precludes that type
of constituent. For example, even though a roun phrase
might be here ("hypothesis-driven" approach), we would not
PUSH for it if the next word clearly precludes its pres-
ence ("data-driven" approach); e.g., a roun phrase would
not beginr with a preposition or conjunctior. It was found
that looking no further than three words ahead is suffi-
cient to prevent "obviously" incorrect PUSHes; in fact,
often the next word is sufficient. Although there are
cases where the three word look-ahead is not sufficiert,

they are relatively rare [Bobrow, 19781].

The third added feature involves a charge to the
depth-first control structure of the ATN. If we PUSH for
a constituent and the result is semantically unacceptable,
we must still allow for the possibility that a semartical-
ly acceptable constituent exists but that the first ore
discovered by the PUSH is not it, Because of the control
structure of the ATN, all alternative possible consti=-
tuents of the desired type will be found before ary alter-
natives to the PUSH are tried. This assumes that it is
more likely that there is a constituent of the desired
type here which will fit into the current phrase than that

the first semantically acceptable constituent of that type

will fit somewhere other thar ir the current phrase.

I

46
However, as the parser becomes more determirnistic, the
latter is more likely to be true; i.e., the first semanti-
cally meaningful result returred from a PUSH is likely to
be the Dbest description of what occurs there. As an
illustration, the parser may be anralyzing the sentence
"LIST THE ALUMINUM SAMPLES ON THE UPPER HALF OF THE
SCREEN". While the parser is processing the noun phrase
that begins with "THE ALUMINUM SAMPLES", it will hy-
pothesize a prepositional phrase, and find "ON THE UPPER
HALF OF THE SCREEN"™. Although this is the correct prepo-
sitioral phrase to fird at this point, it is not cne that
modifies "THE ALUMINUM SAMPLES". Under the rormal ATN
control structure, all other possibilities for preposi-
tional phrases will be explored. Many useless parses may
be generated before it is eventually decided that the roun
phrase has no prepositional phrase modifiers ard that the
prepositional phrase actually modifies the clause. To
avoid this, the control structure of the parser was
changed so that the parser will produce only the first
semantically acceptable result of a PUSH. If that is
rejected as not "making sense" as a constituent of the
current phrase, other branch-points which would produce
alternative results for the PUSH are not tried wuntil all
other alternatives have been tried. In the above example,
rather than trying to interpret the prepositional phrase

differently, other alterratives (such as the end of the

S e e e

- - A
72 e R SOOI MR NR S NN

& L

R

st e

47

noun phrase) are tried. Now, however, it would be dupli-
cating work to make the higher level (¢lause) retwork re-
interpret the prepositioral phrase that was already exam-

ined by the lower level (noun phrase) network.

The fourth added feature allows some of the work
performed by the first attempt to parse a serntence to be
re-used by the later attempts. The Well-Formed Substrirg
facility (WFS) holds a popped constituent along with octher
information to ensure that the rew PUSH that warts to use

the result of anr earlier PUSH has the same context.

These last two features allow a syntactically
correct structure that was hypothesized at the wrong level
of the network to be saved. Then, if the higher level
PUSHes for the same type of constituert at the same place
ir the irput, the previous result is found without further
parsing. This elimirates the re-aralyzing of a phrase

that would otherwise result.

When a sentence is submitted to the RUS System to
be parsed, it is first analyzed by a furctiorn that makes
sure that a dictionary definition of each word ir the sern-
tence is in core. This "lexical prepass" expands abbrevi-
ations, combines words into compounds, performs a morpho-
logical aralysis to produce carorical versions of words,
and finds grammatical categories and features of words.

Some examples of mappings that the 1lexical prepass

TR i e i e R

SAa e

e g e e e ey g
) . STy R

R o s

e

48

performs are shown below.

HIS ==e==-- > HE'

y AND ccecee- > AND
UNITED STATES =w==-~- > UNITED-STATES
THINGS -=e=-- > THING (PLURAL)

The prepass categorizes each word of the irput
irto lexical categories such as: N (noun), V (verb), ORD
(ordinal), ADV (adverbdb), NPR (proper nroun), and so on. If
the exact word from the input is not found ir the diction-
ary, it must have a root form that is in the dictiorary.

The root-finding procedure is as follows:

(1) if the word is a number or strinrg, it
is automatically "in the dictiorary™ as a

gereric; otherwise,

(2) 1look up the word in the dictionary;

if not found,

(3) reduce the word to a root form by
morphological analysis; look up this form;

if not found,

(4) try punctuation analysis to isolate a
root form; 1look wup this form, if not

found,

(5) print the message:

- st e

|
.

49
"I don't know the word:" <word>

"Please type its defiritior or correct spellirg."

Once the prepass has beenr successfully completed,
the ATN begins at the state given by the value of
STARTSTATE, TOP/. At anry given poinrt, the network beinrg
processed defines "expectatiors" of what will be ir the
irput at that poirt. Ir the RUS System, the most impor-
tant expectation is the HEAD of the syntactic wurnit beirg
looked for (the mair verb ir a verb phrase, the mair
preposition in a prepositional phrase, etc.). The way
that elements of the senterce are assigred to the struc-
ture of their syntactic urit is defired by the case frame
(as described in Chapter Three) of the HEAD word of the
unit. The basic approach of the parser, ther, 1is: look
for the HEAD of the phrase (savirg the ron-HEAD words);
find the HEAD; build the phrase structure defined by the
HEAD; check the case frame of the HEAD to be sure that the
elements found so far are acceptable; look for anry other
words that are needed to complete rhe phrase structure;
look for the next HEAD. Parsing a sentence ir the RUS Sys-
tem 1is this continual process of "suggestiorn" by the ATN

and "criticism"™ by the case frame interpreter.

As an illustrationrn of how the calls to the semanr-
tic interpreter are used to assign interpretations as well

as guide the parse, the following 1is taker from the

i
i

TEETOI T T

50

actions of the PUSH NP/ arc in the state VP/OBJ.
(OR (AND (ASSIGNQ * HEAD OBJECT VERBCASES)
(SETR OBJECT *)
(ASSIGNQ 0BJ? HEAD INDOBJ VERBCASES)

(SETR INDOBJ 0BJ?))
(ABORT))

At this point ir the parse, the verb phrase has beenr found
(with HEAD holding the main verb), the nroun phrase that
was found and placed in OBJ? is believed to be the in-
direct object, and the noun phrase that was just succes-
sully PUSHed for (and is, therefore, the value of "#") js
believed to be the direct object. The ¢two <calls ¢to
ASSIGNQ allow the interpretation of the object and inr-
direct object with the verb in HEAD to ©be checked. If
both are successful, ther the registers OBJECT and INDOBJ
are set. Because the four actions are withir a LISP AND,
if all are successful, then the LISP OR has its first com-
porent satisfied (equal to LISP non-NIL) and the OR con=-
struct is completed. If ary ore is not successful, ther
the value of the AND is false and the second compornenrt of
the OR 1is evaluated. This causes ar ABORTion of the
current configuration - either the proposed object or the
proposed indirect object failed to be "understood" with
the main verb in HEAD.

The parsing process proceeds until a parse is
found or all paths have beer exhausted. In the 1latter

case, rather thar output "NO PARSE", an error message

e

51

facility is suggested as ar additior to the RUS System and
is described 1ir the followirg chapter. If the parse was
successful, the "value" of the parse is th: value of the

variable "k#n,

The output of the parse is prirted from the value
of the variable "##" (How to charge what is displayed of
%% is described ir Chapter Six.) "Double star" is a list
data structure that contairs the values assigred to the
registers durirg the parse. The word "SYNTAX" marks the
beginrning of a nrew level in the parse. At the erd of each
level, the value of the HEAD of that phrase is listed. To
illustrate, the serterce "I GAVE YOU THE BOAT"™ was parsed
(with only the "default" semantic rules as described ir

Chapter Three).

(DECLARATIVE SYNTAX
((NOADJCOMPLEMENT)
(ASPECT (TENSEMARK TENSE ((TNS PAST))))
(HEAD . GIVE)
(STYPE . DECLARATIVE))
INDOBJ
(NP SYNTAX
(HEAD PRONOUN HEAD YOU LEX YOU)
DETERMINER
(DETERMINER CASEKEY NIL DETERMINER NIL)
HEAD
(PRONOUN HEAD YOU LEX YOU)
OBJECT
(NP SYNTAX
((HEAD NOUN HEAD BOAT LEX BOAT NUMBER SG)
(DET? DETERMINER ART
(ART HEAD THE SINGULAR T PLURAL T))
(ART ART HEAD THE SINGULAR T PLURAL T))
DETERMINER
(DETERMINER CASEKEY THE DETERMINER
(DETERMINER ART
(ART HEAD THE SINGULAR T PLURAL T)))

T T

e

Y= xR o Y

52

HEAD
(NOUN HEAD BOAT LEX BOAT NUMBER SG))
SUBJECT
(NP SYNTAX
(HEAD PRONOUN HEAD I LEX I)
DETERMINER
(DETERMINER CASEKEY NIL DETERMINER NIL)
HEAD
(PRONOUN HEAD I LEX I))
HEAD GIVE)
DECLARATIVE
SYNTAX INDOBJ OBJECT SUBJECT AD
GIVE
_\
\\

Although the above is a greatly abbreviated ver-
sion of the actual cutput, it illustrates the representa-
tions of the 1levels. The result is a DECLARATIVE with
HEAD equal to ?GIVE" (ir the past tense). The SYNTAX list
of the phrase éonsists of some of its attributes; there is
no ad jective complemert, the head is "GIVE" ir the past
tense, etc. There are three "sub-levels"™ in the phrase.
The INDOBJ (indirect object) level is a roun phrase whose
HEAD {s "YOU", with no determiner. The OBJECT level
represents the object of the sentence, "THE BOAT". Fol-
lowinrg SYNTAX, the values of the registers HEAD, DET?, ard
ART are listed. This noun phrase has a determirer of

"THE" (which can be with a sirgular or plural rourn) and

"BOAT" as its HEAD. Firally, the third 1level is the

LM IPORT SR

e AL i

53
SUBJECT of the phrase. 1Its HEAD is "I"; it has no deter-
miner. The "double star", thenr, contairs the output of
the parse in this 1level/sub-level representatior, with
SYNTAX signallirg the begirning of a level and HEAD mark-
irng the word that is the head of the level and that the

level is completed.

As the parse proceeds, each "sub-network" builds
the syntactic urit that was PUSHed for (roun phrase,
prepositional phrase, etc.), using the HEAD of the unit as
a guide for what "kird" of words are expected to complete
it; and, the "parts" of the unit may be checked semanti-
cally as well as the entire unit itself. Uporn completion
of a successful parse, the variable *#* contairs the list

structures that are held by the registers as represertirg

the "meanrirg" of the total input phrase.

I e e

BrRITR LS ot WL

Chapter Five

Meanings of States

A good error message facility is ar essential part

of any system that is purported to be "user-oriented".
When usirg a high-level programming lanrguage, for example,
we expect the compiler to output mearingful error mes-
sages. Any programmer who has enrcountered messages such
as "ERR U4AT76:35" is well aware of the importance of the
content of these messages; ard, certairly, a compiler that
does not output ary messages (except "PROGRAM COMPILED" or
"PROGRAM NOT COMPILED") is totally unacceptable. Because

of the relatively 1limited grammar of a programming

larguage, a good error message mecharism for its compiler
can be written with a reasonable amount of effort; ir

fact, the programmer expects such a facility.

In a ratural language procesSing system, there |is
a much broader rarge of inputs that need to be processed.
The grammar of a programming language s constructed so
that it is unambiguous, and makes use of a limited "voca-
bulary"; but a natural language grammar is taken from

actual humar communication - with ambiguity ard dependerce

on context. The user of a natural larguage processinrg

54

55 }

system canr exceed the "krowledge" of the system inr a

number of ways, each of which should be hardled ir a way

i E that informs the user (as much as possible) why the system
was unable to process the input. The RUS System does not i
i currently have such anr error message facility; the k
remainder of this chapter describes the technique we sug-

gest for implementing one.

The simplest case ir which the irput car fail to
i be parsed is when it containrs a word unknown to the sys-
tem. In the RUS System, the lexical prepass (described ir

the previous chapter) will try to find, inr the dictiorary,

the root form of each word of the ipput., If it is wunable

to fird the root form of any word, it will ask the user to

enter the correct spelling of the word or its defirition.

More often, however, the user exceeds the system's
"knowledge" of natural larguage in a more serious way.
The wuser may input a phrase whose syntactic structure is
beyond the range of the current grammar. This could be

due to the existence of a class of acceptable syntactic

structures that the grammar does not hardle; or, the irput

pr=—

was not (as much of our verbal communication is not) syn-

tactically correct. Whatever the case, the error facility

J .]

should explain, ir as much detail as possible, why the

irput failed to parse. The irput sentence may be withir

PYr R R

the "syntactic capability" of the ATN, but could contair a

A , T —— . e - .

56
phrase that cannrot be "understood" by the semantic
analysis; the 1lexicon CASESTRUC rules for the words ir-
volved do not allow the semartic functiors to succeed in
assigning a "meaninrg" to the phrase. We are usually able
to tell the user what component of the phrase was uninter-
pretable (subject, determiner, etc.), but the presert sys-
tem has no "reasonirg" component to examire the CASESTRUC
rules 1ir order to form ar explarationr of what input could
have beenrn understood or why the present phrase could not
be. Ir this case, the message we suggest at present is of

a more general rature. Through the error message mechan-

ism described below, we canr determine which semantic check
failed, but we are unable to explair, ir a detailed way,

why it failed.

As the irput is processed, the ATN traverses vari-
ous arcs, movirg from state to state. Each state may be
thought of as a representation of what has been under-
stood, what 1is now expected, and where processinrg is to
continrue if what is expected is found. If the parsing
process "blocks" at a state, this irnformationrn canr be used
to explain to the user how his input did not meet the
parser's ‘"expectations". The "meaning" of a state, then,
provides the necessary informatior for the constructinrg of
error messages to be output if the parse blocks at that

state.

The meaninrg-of-a=-state/error-message representa-
tion that is used is that of Weischedel ard Black [1979]
and Black [1979]. The first problem is firndirg the state
that best represents the greatest degree to which the
parser "understood" the input. Since the parser will try
many alternatives before they are all found to be unsuc-
cessful, there are many paths, ard therefore, many blocked
states which could be considered. First, all of the paths
which did not consume the greatest rumber of words are
elimirated. Then, of the remaining paths, we want to
select one path. The heuristic used is to determire the
"length" of each path. This is equal to the nrumber of
arcs traversed not courntirg "trivial" PUSH or JUMP arecs
(i.e., those with T conditionrs). The path with the
greatest "length" is chosen as being the most likely ore.
If more thar one path meets these criteria, ther one |is

choser nondetermiristically.

Although this error message facility 1is not yet
implemented for the RUS System, the "meanings"™ of mary of
the states have been written. When the error mechanism
has been constructed, the parser will either successfully
parse the inrput sentence, or it will irvoke the error

function for the state as described above.

The "meaning” of a state 1is represented as a

series of conditior/action pairs that are placed or the

property list of that state.

(<state-name>
(<condition 1> <action>¥)
(<conditionr 2> <action>¥)

(<conditior n> <action>¥*))

The control structure is similar to that of the
LISP COND. That is, <conditionr 1> is EVALuated. If the
value is true (LISP non=-NIL), ther the <action>* (series
of actions) 1is EVALuated. If the value of <condition 1>
is NIL, then <condition 2> is EVALuated. This continues
until a <cordition> is norn-NIL ard its <action>®* performed
or the pairs are exhausted (all <condition>s are NIL and

ro messages are printed).

A <condition> may be ary LISP predicate. In error
messages for the states of the RUS ATN, the typical <con-
dition> might examire the contents of a register, invoke a
parser utility function to determire what may be followinrg
the currert word, or call a semanrtic assigrment functionr
to reveal whether or nor such an assignment was successful

at this point.

An <action> may be one of the followirg:

(PCHAR (QUOTE " <text> ™))
prints the characters inr <{text>

(PRINT-REG (GETR <reg>))
prints the contents of register <reg>

(PRINT-ANY-STRING <spec>)

PITTEI

L

o a——. b s e

)

59

prints the value of <{spec);
{spec> may be a LISP expressionr such as
(CADR (GETR HEAD)), or, more frequently,
the symbol *, whose value is the root
form of current input word or, if ir a
PUSH arc, the expressior popped, or LEX,
whose value is the currert irput word
itself.

(TERPRI)
prints a carriage return/lire feed

(EXAMPLES? <word>)
prirts example phrases usirg the word <word>;
the examples are on a separate disk
file. Each word has a list whose first
element is the word itself anrd whose
remaining elements are the examples.

(CONDACT <state>)
transfers control to the condition/action
pairs of the state <(state>
(LOOKAHEAD)
causes the simulation of all trarsitions to
other states from this one via arecs
with unconditiorally True conrditiors.
The new state's cordition/actior pairs
are then evaluated.
(; <comment>)
a NULL actior. Allows any actior, typically

the first of a group of actionrns, to be
a {comment>.

Two additional features are a macro facility ard a
message hardlirg mecharism for embedded senterces. In
defiring a macro, the form of the conditior/actior pairs
is the same, except the macro name replaces the state
rame. Then, any condition/action pair ir any state (ir-
cludirg those ir another macro) may be simply a macro

name. The messages for embedded sentences allow the

printing of a message explairing that the higher level

'l].lllllUll!!l'!l!-lI-nl-lnlnl!u!nlmn-w-uuuuruw~ r—— i ""“’”?"1

60

sentence was acceptable, so that it is clear that the

error lies in the embedded senternce. The messages for the
states that begin "lookinrng" for ar embedded sentence are
written in the same way except that the state name is pre-
ceded by #BAKSTK*. This allows the separation of messages
for blocking at a particular state arnd those for blocking

while processing anr embedded sertence from that state.

The error message facility will output the irput
sentence up to the point where the parse blocked. The
printing functions above (PRINT-REG and PRINT-ANY-STRING)
examire the form of their argumerts ard determine how to
print them in a reat format. Because of the structure of
the RUS ATN, and because there was not a RUS-oriented lex-
icorn available, the EXAMPLES? and LOOKAHEAD functions were

not used ir writing the sample messages.

To 1illustrate how the condition/action pairs
represent the "meaning" of a state, an example is ex-
plainred below. The "meanings" of all of the states ir the

S, VP, and NP subgraphs appear in Appendix B.

61
1 (ASPECT/TO
2 ((AND (CAT V)
3 (NOT (CHECKF V UNTENSED)))
4 (; ASPECT VERB followed by 'TO' should then be
5 followed by an untersed verb.
6 This ore is tensed.
7 (PCHAR (QUOTE "™ AN 'ASPECT' VERB, SUCH AS ' ™))
8 (PRINT-REG (GETR HEAD))
9 (PCHAR (QUOTE " ', FOLLOWED BY 'TO', EXPECTS AN
UNTENSED "))
10 (PCHAR (QUOTE ™ VERB TO BE NEXT, AS IN: "))
11 (TERPRI)
12 (PRINT-REG (GETR HEAD))
13 (PCHAR (QUOTE "™ TO LEAVE... "))
14 (TERPRI)
15 (PRINT-ANY-STRING LEX)
16 (PCHAR (QUOTE " IS NOT UNTENSED. "))
17 (TERPRI))
18 ((NOT (CAT V))
19 (; As above, except we don't ever have a verb.)
20 (PCHAR (QUOTE " AN 'ASPECT' VERB FOLLOWED 8Y
l"ro! "))
21 (PCHAR (QUOTE "™ EXPECTS AN UNTENSED VERB, AS
IN: "))
22 (TERPRI)
23 (PCHAR (QUOTE " IT BEGAN TO 'GROW'. ™))
24 (TERPRI)
25 (PRINT-ANY-STRING LEX)
26 (PCHAR (QUOTE "™ IS NOT A VERB. "))
27 (TERPRI)))

At the beginrrirg of the VP (Verb Phrase) group of
arcs, an "aspect"™ verbd, such as 'START', 'BEGIN', 'TRY',
may be followed by the word 'TO', If this 1is the case,
the transition is made to state ASPECT/TO. We nrow expect
an untensed verb. Blocking at this state car be due ¢to
having 2 verb that is not untensed (or, at least, is not
marked in the lexicon as beirg untensed), or because the

current word is not even a verb.

The condition/action pairs for state ASPECT/TO are

shown above. Line 1 contains the name of the state,

s e ———r

e
ot it * N o

T

. e ————
ol

62

Lires 2 and 3 form the first condition. Following the
comment (lines 4, 5, and 6) are the printirg commanrds of
the message. To illustrate the effect of the commands, if
the head verb were 'START' and the irput word were 'SWAM'
('START TO SWAM'), the message that would be prirted would
be:

AN 'ASPECT' VERB, SUCH AS 'START'

, FOLLOWED BY 'TO', EXPECTS AN

UNTENSED VERB TO BE NEXT, AS IN:

START TO LEAVE...

SWAM IS NOT UNTENSED.

If the word after 'TO' is not a verb at all, then
the conditior at line 18 would be true, and the second
message (lires 20 thru 27) would be printed. 1If the input
were 'START TO DESK', the message would be:

AN 'ASPECT' VERB FOLLOWED BY 'TO'
EXPECTS AN UNTENSED VERB, AS IN:

IT BEGAN TO 'GROW'.
DESK IS NOT A VERB.

The condition/actior pairs may use the values of
the registers both to determine which message should be
printed and as part of the output of the message itself.
Because the information about a word is stored in the lex-
icon, the messages can guide the system builder inr
developinrg the lexicon. If a message seems to be "wrong",
it may be because the irformation stored in the lexicon

about a word inr the sentence 1is ircorrect and/or

4

b A

o ——————— e ey g

NS -3

———— -

Bhim .

Y

¥

incomplete.

Because of the ability of the parser to "look
ahead" usirg the parser utility functiors, many state
transitiorns are made krowirg that the destiration state
will be able to process the irput and, therefore, the
parse cannot block there. Also, some state ¢trarsitions
are made if the irput word is a member of ore of a rumber
of categories, and at the destiration state, each of these
categories has ar arc. Againr, unless there are semantic
ABORTs, the parse cannot block at the destiratior state.
Therefore, there are a number of states ir the RUS ATN for
which no error messages were written, since it is impossi-
ble for the parse to block at those states. The "meanirg"
of those states are explaired ir paragraph form at the erd

of Appendix B.

An example of such a situatior is the Q/HOW state.
The Q/HOW state is reached from state Q/ if the "“current®
word is 'HOW', and the predicate (NEXTCATS (ADJ SADV)) is
true. If this is true, then the category of the word
after the 'HOW' is adjective or adverb. In state Q/HOW,
there are two arcs, a CAT ADJ arc and a CAT SADV arc, both
with trivially true conditions T. Herce, the orly way to
reach state Q/HOW is after the word 'HOW' has been con-
sumed and the "current" word is an adjective or an adverb.

At state Q/HOW, the two arcs have as their orly cornditions

e~

JE "2 LN AR

E TR SN

A =X

64

that the word is an adjective or an adverb. Therefore,

the parse is unable to block at state Q/HOW.

The condition/action pairs may be thought of as
serving a dual purpose. They erable the system user to
quickly examine what is expected at a state, what has beer
found up to that point, and, therefore, determine how the
state "fits in" to the overall ATN - what 1its "mearinrg"
is. With the implementation of the error functiorn, the
condition/action pairs also provide a powerful error fa-
cility that allows the user to experimenrt with the system
more freely. The semartic comporent canr be built gradual-
ly, with the user addinrg rules while using the error mes-
sages for sertences that he/she wants to be accepted as a

guide,

i ey

Iy

PR F<F-Joit. RADSREA 2 LA

i eusei

Chapter Six

Users Manual

The semantic componenrt of the RUS System is writ-
ten in INTERLISP [Teitelmar, 1975]; the ATN compiler [Bur-
ton, 19761 compiles the syntactic comporent into
INTERLISP. These two referenrces should be corsulted for
the details concerning the operation and use of the two
systems. The ATN compiler was not available t5 wus; the
ATN was already in 1its compiled form. Therefore, the
operation and use of the grammar compiler will not be dis-

cussed.

The RUS System is invoked by entering "rusparser"
ard pressing the return key. (The return is pressed after
every command; we will assume this irn the remairirg dis-
cussior.) The system prompt is ar irteger (which allows
reference to a previous command by using its rumber) fol-
lowed by a "_" (underlire). 'A phrase may now be parsed
(using the presenrt dictionary, which must at least contair
"default" semantic rules for <NP> and <VP>, if nothirg
else,) by entering "P(<phrase>)". For example, to parse
the title of this chapter, "P(USERS MANUAL)" would be

entered. Notice that the input form nreed not be the

65

‘p

AT - ‘_._.IJ

66

"usual" LISP prefix form that conrsists of a list whose
first element is the function. Here, the functior car be
ramed outside of the parenrtheses and the argument{(s) to
the function listed inside them. Also, the system au-
tomatically performs a carriage return/line feed once the
parentheses "match up". (The symbol "1]" car be wused to
indicate the appropriate number of right parentheses need-

ed to end the current list.)

The syntactic comporent of the RUS System is
"fixed" (since we orly have it 1ir the compiled form);
changes are made by alterirg the semantic CASESTRUC case
frames (or any other part of the dictiorary entries). A
typical 1instance that makes use of mary of the system's
features is the entry of a new sentence to those that have
already been parsed. A good first step is to try to parse
it usinrg the "P"™ function described above. This will
invoke the 1lexical prepass (described ir Chapter Four)
which will "complain" about ary word in the irput whose
root form could not be located ir the dictiorary. If a
word cannrot be found, the prepass prompts for a correct
spelling of the word or its defiritior. The user car add
@ word to the dictionary (without trying to parse a phrase
containing it) by calling the functior MAKEKNOWN. Enter-
ing "(MAKEKNOWN <word>)", where <word> 1is the word ir
question, will cause its current defiritionr to be prinrted,

or a request for its defirition if ore does not already

exist. Two examples of basic definitions are shown below.

(N ((SENTENCE (NUMBER SG))))
definition of "sentence®", a sirgular noun

(V. ((PARSE (PRESPART))))
definition of "parsinrg", the present participle
of "parse"

Once the root forms of all of the words ir the
input phrase are defined, the senrtence car be parsed
(using the "P" function). The phrase structure that 1is
produced is based on the present dictiorary. If this is
the dictiorary currently used, it contairs orly a few
"default" semantic assigrments (see Chapter Three). The
CASESTRUC of any word car be charged by calling the spe-
cial case editor "edite". Entering "edite (<Kword>)" iri-
tiates the editing of the CASESTRUC for the word <word>.
If the word has no present case frame, “CASESTRUC is NIL -
Use : command to provide imitial CASESTRUC" is printed.
The wuser may then defire a case frame for this word by
enterinrg "(:(<case frame>))", where <{case frame> is a case
frame of the form described ir Chapter Three. If a case
frame already exists for the word, the editor 1is entered
and ary of the INTERLISP editirg commands may be used to
alter the form of the CASESTRUC. Once the desired case
frame 1is ertered, the irput phrase car again be parsed,
and the resulting changes in the phrase structure output

examinred.

Often, it is very useful to be able to see how the

68

parse 1is proceeding. The parse trace "switch" is charged
by entering "(PMS)" before parsing another phrase. If the
trace optiorn was off, it is now or, and vice versa. The
parse trace causes the states, arcs, and nrew register
values to be printed as a parse progresses. Also, a
"NODE=..." line is output. This shows the words remaining
in the irput string as each state is entered (if a list)
or the value popped from the processing of a "sub-retwork"
(if a list withir a list). The user may ther examire the
progression of the parse and pinpoint a problem, where the
ATN is wunable to interpret somethirg the user wanted it

to, for example.

In addition to this "parse trace" optior, there is
also an INTERLISP trace function that allows ary function
to be M"traced". Entering "trace (<fn 1>,,.<fn)" will
cause the functions <fr 1>...{fn n> to be "traced”. This
means that every time one of the functions is called, the
value of its arguments is output, it itself is evaluated,
and then the resulting value is printed. In this way the
user car know what functions are called, what their argu-
ments are, and what result the function produces, Often,
if a group of functions that the user is irterested ir are
irvoked frequently during a parse (such as ASSIGN), the
user might "put a trace" on the functiors, set the ™"parse
tree" switch as described above, and then parse a sample

phrase. Now the user canr see the progressionr of the parse

69
from state to state in the ATN as well as examinre the

effect of the functions in question on the parse.

Another INTERLISP feature that is very useful for
debugging is the break function, Typirg "break (<fn
1>...4{fn n>)" will cause the functions listed to be "bro-
ken" whenever they are called. This mears that as one is
called, but before it 1is evaluated, a message "(<fr x>
BROKEN)" is printed, a colon (the break prompt) is prirt-
ed, and execution stopped. The user may now enter any
valid INTERLISP command (just as if he/she were at the
"normal”™ level of processirg) or one of a nrumer of break
commands. Some of the more useful commands are 1listed
below.

STATE prints the current state in the ATN

?= prints the values of the arguments of the
broken function

EVAL evaluates the broken functior

VALUE prints the value of the break (which is the
value of the function if it was just
EVALed)

GO evaluates the broker furctiorn (if it was not
already EVALed), prints the value of the
break, and then ends the break (i.e.,
contirues processirg)

0K same as GO except the value is not printed.

The effects of both the "trace"™ and "break" debug-
ging commanrds are removea by the "unbreak" command.

Enterirg "unbreak (<fr 1>,..<fr m)" will remove the

70

listed functionrs from the trace and break lists; "unbreak
()" will remove all breaks ard traces. Both the trace anrd
break functions are much more flexible tharn shown here.
The full list of options available when using them are

explained ir the INTERLISP Manual.

Once anr input phrase has been parsed, the result
is placed ir the variable "#*#"_ Although a phrase struc-
ture is always printed as the result of the parse, the
structure upon which it 1is based can also be examined.
Typing "editv (¥*¥)" ywill allow the user to edit the full
output of the parse. Any editing command can then be
entered. Since the reason for editing "**" is usually ¢to
examire it, not <change it, the "pp" editirg command to
"prettyprint" the value of "#*" jis usually the only com=-
mand entered (other thar "ok" to exit the editor, that
is). The variable DON'TPRINTSLOTS holds a list of slots
in "##» that are not to be printed ir the normal parser
output. Changirg this variable's value is the way to
alter the form of the parser output that is automatically
printed as the result of the parse; the value of "##n g

unaffected.

Occassionally, it is useful to be able to save all
or a portion of a terminral session on the system. Ir this
way, many people may be able to examire a sample session

more easily, and the actual printout from the session car

71

be lost without grave consequences. A “transcript" of a

portion of a termiral session may be saved by entering
"dribble (<filername>)". From the point where that command
was entered until "dribble ()" is entered, all lires are
appended to the end of the file <{filename>. If the file
did not exist, it is created, filled with the "dribbled”

lires, and saved.

The precedirg discussion is meant to serve only as
an irtroduction to allow a wuser somewhat familiar with
LISP editors, but unfamiliar with INTERLISP ard the RUS
System, to experiment with the system, Mary more options
exist for the commands described above; and the INTERLISP
system has many additional commands that the wuser might

find useful inr experimenting with the RUS System,

T

A 7 Tt AT A £ R

e

i
£
'
4
!
‘

Chapter Seven

Conclusion

The optimal methodology for a ratural lanrguage
processing system is one in which the one of the two com-
ponents (syntax or semantics) that is "in control" at any
given time is the ore that is best able to determine how
the current portion of the input should be hardled. Se-
mantic grammars achieved this integration of the two types
of "knowledge", but at the cost of a decrease in flexibil-
ity and a rear total lack of transportability to nrew ap-
plicatiorn domairs. The RUS System has frequent interac-
tion between the twoc components (as soon as the "head" of
a syntactic urit 1is found), but has completely separate
representations for them; movirg to a new application

domain requires altering only the semartic component.

The Augmented Transitior Network that is used was
developed while being applied to three different domainrs
(Bobrow, 1978). The resulting parser handles a very large
subset of English; many of the constructs that were missed
ir one application were found while examirirg another.
Also, the Well-Formed Substring Table facility, GROUP

arcs, "lookahead" functions, and altered depth-first

72

A amdindid DAL il

coa X

Gl aen N m e

73
control structure have increased the determirism of the
"standard" ATN paradigm. These attempts to move away from
"hypothesis-driven" toward "data-driven" processing, along
with the ATN being compiled have greatly improved the
efficiency of the ATN. Actual implementations of RUS-
based systems have parsed from fifty to sixty percent of
their inputs with no back-up, and from fifteen to twenty-
five percenrt with "semantic back-up" (due to inrterpretinrg
a construct correctly, but at the wrong level - as people
would do in a left-to-right examiratior of the input)
{Mark anrd Barton, 1980; Bobrow, 1978]. Sinrce the syntac-
tic comporent of the system is "fixed", it is crucial that
it is able to process a large subset of English efficient-
ly. (Fairly complex sentences took three-fourths of a

second of CPU time to parse.)

A "usable" nratural language processinrg system must
have ar error message facility that is irvoked when a
parse fails. The "state meanirgs" corcept has been imple-
mented in an earlier system [Black, 1979; Weischedel ard
Black, 1979]. It was found to be applicable to a gereral
class of grammars and to require little modification of
the grammar itself. Because of the difficulties that may
arise in the writing of the semantic rules for a rew ap-
plication domain, the error message facility would be an
invaluable aid in determiring the cause of parsing

failures. Indeed, the constructing of a set of semartic

_d

s

S
B e e midadhd o Vet e an 3 sl

- i

i I o b K o o

c—

r;-—'—.._,‘mw T o n . —— . ———

74
rules by a ron-experienced desigrer could be a very diffi-
cult process without such a facility. Although the func-
tions to implement this facility for the RUS System have

not yet been writter, the moderate effort we expended in
writing the "meanrirgs of the states", along with the
results of the previous work, indicate that writirg the

necessary implemertation functions can be completed.

Although a RUS-oriented semantic component (the
dictionary) was not available, those who have developed
(or are planning to develop) a lexicon for a nrew domain
have estimated the effort involved to be from one to four
person-months [Mark and Bartor, 1980; Bobrow, 1978]. This
represents a significanrt improvement 1in the degree of

transportability of ratural language processirg systems.

The <closer the syntactic and semanrtic comporents
of a system work together, the more efficiently the system
will process English irput. Although the RUS System util-
izes the method of frequent interactions based onr the
findirg of syntactic "units", the best interactior metho-
dology intuitively seems to be to allow the two components
to process an input phrase totally "in parallel" (with the
component with the most "knowledge" at any given poirt ir
control). However, the communication/control problems in
multiprocessing are difficult ones; it is quite possible

that the overhead needed to allow such processing would

75

strain the efficiency of the system more thanr creating the

"optimal parsing environment" would improve it.

The RUS System meets mary of the goals of a good
ratural larguage processirg system. The separation of the
syntactic and semantic componerts allows the capturirg of
syntactic regularities and the modification of one type of
"knowledge" separately from the other., The frequent se-
mantic checks permit substantial guidance of the parse by
domain-dependent "knowledge". The addition of many
features to the standard ATN formalism has greatly in-
creased its power and efficiency. The case structure
representatior of domain "knowledge" is a very flexible
representation; the user may "defire" the ways ir which a
word may be used as broadly or as narrowly as desired. 1In
comparison to previous natural language processing sys-
tems, the RUS System 1is able to be applied to a wider
range of application domains, has a greater flexibility in
how domain-dependent "knowledge" can be represented, uses
the domain "knowledge™ to a signrificant degree ir guidinrg

the parse, and is efficient enough to respond to input

phrases within a one second time period.

RNV TR -,

okt

,___.m..__a‘,‘

S e e W

Bibliography

Black, John E. "Generating Error Messages for Naive Users
of Software Having Natural Language Input." Unpub-
lished Masters thesis, University of Delaware, 1979.

Bobrow, Robert J. "The RUS System." Research inr Natural

Larguage Understandirg. BBN Report No. 3878, Cam-

brigge, Massachusetts: Bolt Beranek and Newman Inc.,
1978.

Bruce, Bertram C. "Case Systems for Natural Language."
Artificial Intelligence, December, 1975, 327-360.

Burton, Richard R. Semantic Grammar: Arn Ergireerinrg
Technique for Constructing Natural Language
Understanding Systems. BBN Report No. 3453. Cam-
brigge, Massachusetts: Bolt Berarek and Newman Inc.,
1976.

Mark, William S. ard Barton, G. Edward, Jr. The
RUSGRAMMAR Parsing System. Research Publication
GMR-3203. Warren, Michigar: General Motors Research
Laboratories, 1980.

Teitelmar, Warren INTERLISP Reference Manual. Palo Alto,
California: Xerox Palo Alto Research Center, 1975.

Weischedel, Ralph M. and Black, Johr E. Resporndirg to
Potentially Unparsable Sentences. Technical Report
No. 79/3, Department of Computer and Information Sci=
ences, University of Delaware, Newark, Delaware,
1979. (To appear in American Journal of
Computatioral Lirguistics, 1980).

Winograd, Terry. "Procedures as a Representation for Data
in a Computer Program for Understarding Natural
Language." Doctoral dissertation, Massachusetts
Institute of Techrnology, 1971.

Woods, William A. "An Experimental Parsing System for
Transition Network Grammars." Natural Laniuage
g0~

Processing. Edited by R. Rustin, New York:
rithmics Bress. 1973.

77

Woods, William A. "Semantics and Quanrtificatior ir Natur-
al Larnguage Question Answerinrg ." Advances ir

Computers. Vol. 17. Edited by M. C. Yovits. New
York: Academic Press, 1978.

D A

BN D)

PRITRI VR s A

0 L

Appendix A
RUS ATN Graph

The diagrams on the following pages represent the
Augmented Transition Network of the RUS System. The full
list of corditions (and actions) are impossible to irclude
ir such a diagram. The arc labels do irclude the "type"
of the arc (WRD, CAT, JUMP, etec.) and its arguments. For
example, a CAT arc 1label includes the <category being
looked for. None of the additional conditiors or any of

the actions are listed.

If a state 1is represented by dotted lires, that
indicates that the state appears on another page of the
graph as well. The number inr the square nrext to the dot-
ted lire state indicates the page number on which the

state appears in "non-dotted" form.

78

RIS

e e rammy Sy

INFT TR
Jwap @ -

s nemf 49
Fura g \/40)

ny.
>\.§

)
Hz

‘w. = L = B bt s T pp——s
i] ta ﬂ
G M
- A Ny Q
B wna
3 *Jae4 -
‘3 NN
v \,.or .ww_w
// 8 LYY o__\wv
/ ?.:. /
. .
/ .-...wwr \xow -
' ,
I
\ ,
\ V7
) A,
™~ !aa«..ﬁq,: P,
Jwne \&V w a
™~ \va P s ova

AL LD

/ ‘
; \:.“u.nz.c...mi 0L] (RYeVIoss - K1TVREm)
77133 Wk el (SITH 3901U) gIm X

\\ A (003K SIGILFUT) 0¥

R ey

T oy o .. a3 TV 1 f gk o il i, iy il L s lbimas o o . e s o 27 ke’ s

80

lrg)--.
M,

~
— ..

LRl G D

S “eaw Tyl /9 T~)
LON g , - ™
U4]
——U i Y™ 4 i‘/
S iy - ﬁv o - AIvo-IyY
@ e 144
sl‘ﬁm %%MQ RTEVY \w " _Twsr - [D

me——c - MR o AL e
~
X
%
Coem
- - — -~ \
T T IVRE” -
S L ALS “
ﬁu.&.ﬂ@\
Sovm
I T LT]

u
__dint ..,_?,..
(/i a p
\ﬂ)
i
1%
AdvS 1Y)
JLoNAEOY Msie) .
™ i n) e .:3_ 3
~ T HE: B
o4 \zﬂ;fi neay ﬂ ...
ace|, Aovs v 10 N 1
i 2T Wwiny
AT LI T a5 ..n?, g
/ ﬁ a,tﬂ n ,
.q..)n \n .
" L .
%

./ fod ’ B
o . VA i
N vw.V @ . S TLeN_ gvm .

SNy o~ A B .

e,
4 kY Bsn,

JIN nsny v
J.w ,u._.o LRI AN

81
33
&
Gh
R

o

82

iR Al S ot Gaia NG s i MM i omammts. 5, i
‘\Qg bang i m
- ¥/ 508 s\ :
(i~ e ot i
N Y] / gl
2,
7
Lo f B
i
Jod an Joove ra:t \!
Is¥. -
vy
:rlx. -
oy o, T,
{[130% .
VT sonp (OW
s o
~
- /,/
E ﬂ&\. ’
3 e

. cs..h
’ -ﬂu szu
B -
AN JFV Wsay e ..u..o
b9, --

u‘\-tb‘-..c $S09 —-
TL iSIWIseI13 nens /o . :
L
n R3mwWY oL youm .. K2 y.? tves v IR \ tc._s
(* awwy oo Y ., .) RN
(2] 4 .
iotll @ « < sealpmm} N\ - >,
' ﬁ / -, i3
. ~ 3=~ o
"an \/ N K
R v 29 \, 1
us \@ \ - &

B, Py
0&. 33
Isy... ANT 1ing e wv\-.ﬂv. >~
{Lwoy! . LS !nahnzwx\su
Lt ~F? -

e S e e § o ek S iy

(40 .J..! e K
. R g
Vo T o rew a,: JNT el P g..]n s ms
W fh ong [feery . A\ etk 13 19 v X
g 30 \s.‘.w Iraiagen v (L) dud W 1y .: v vE 1V :
o1 oy . W :
Ky ;o w300 30, - ,
C%. i 7:_0:5.... .
ot .
195, LI < AeV¥ 1v>
Sy s 3
! : ;:rﬁ
N ;
M / Py Hing NM\;) %
Y
*u!a:._. Ivs _ 0 \ Gy,
892 1vy . . g
Zipy, PRIVRIE NI NG B&.ﬂ“‘j& »ﬁm&u&. iuv‘j) 4
Minsy 4o i - Jwin- ¢ u:.\w sigwm{ [/ v 3
> el Pannins w«i«.. 1139 L N e gov 1> N - :
a&ﬂMﬂ 13° (&1 e wpht Jiong .!v\‘.ow . -
R ot ey ,
s!-.<vﬂ o « i] M
. |
N
{
_ra.t ; K
iy v IN K GM:. i
s S 104 1970s, \u‘&
s e :ﬁd
- N
- . .
) Ty
“\nu T FEE \pwewed -
fac o T . B
B e 6 Ty ™ :
£ e - .,
..ﬁ.ﬂ.:x . oot /A—J! B
Y
r
o
P, - e y ” POy e L * a5
PP A R S e e A Rt et N . . P . ey o ’

R e e s

84

bR
fanp

3.&.. ‘¢
WS

.-

..\..2\

JYRE

At
JL dawm

R }?\U
dwnp .“..

- v,
\&: Azny As.é.z
S

£
Jumin (g
o3

~—

e e P i i o e

85

. e
404,
Cam ::\M

o (o)

EAg vy
L vt “

donp 1 . P
Lay 1vy ,,Sh.w L5oWD

- JoIa

]

4
75 usay (i E.ﬂ&.@@ —

159 .-

\:..9.‘ N S @

Y
- VM
A , ng
ny Ney ey
@ by So1 I;Nl 1.$

P AL AL Al _
FINNY I

N (7 . —_— m
"33} I ldw
ta e LN 9y

By -

h dﬂu mm -

"‘-ﬂ el

o ()

Q.-J h —!/.nl.-(vy b

4 Jdung
3. Jue .
LS S T
Wﬂ(ﬂﬂ: 13

TN

ﬁ L u
awne (o) it.—v
e’ -

2
<J
}.m. NAILIYIS —E

WINLIT PLDR)
L SN aum
/g :w

A
_ 3980 193 @wu& 1 c§33 @sv ﬂgdﬂ \..b
A

G
e R T t.w

(42003 J—.S A\%‘.
&

i e oA

(s/

Appendix B

State Mearirgs:
S, VP, ard NP Groups

((AND (CAT V)
(CHECKF V UNTENSED)
(NOT (®® : IMPERATIVE)))
(; Ar imperative is expected. The verb must be untersed
ard have a CASESTRUC rule for imperative. Ir this
case, it is untensed but has no rule for imperative.)
(PCHAR (QUOTE ® THE VERB ' "))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' , ALTHOUGH UNTENSED, CANNCT BE UNDERSTQJ0D "))
(PCHAR (QUOTE ™ AS AN IMPERATIVE. "))
(TERPRI1))
((AND (CAT V)
(NOT (CHECKF V UNTENSED))
(NOT (®# : IMPERATIVE)))
(; AS ir the case above, except that the verd is nct urtersed.)
(PCHAR (QUOTE ™ THE VERB ' "))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' CANNOT START A SENTENCE. A VERB HERE ™))
(PCHAR (QUOTE "™ INDICATES AN IMPERATIVE AND MUST BE UNTENSED. "))
(TERPRI))
((CAT V)
(; As above, except the verb has ar imperative rule, but is not
untensed.)
(PCHAR (QUOTE " TO BE AN IMPERATIVE, THE VERB MUST BE UNTEINSED. ")
(TERPRI))
(T
(; Blocked at a word that is rot a verdb. List of what is
expected at this state is printed cut.)
(PCHAR (QUOTEL " THE SEGINNING OF A SENTINCE (OR aN EMBEDDED "))
(PCHAR (QUOTE SENTENCE) MUST SE ONE OF THE FOLLOWING: "))

(PCHAR (QUOTE « AN ADVERB "))
(PCHAR (QUOTE . A PREPOSITION "))
(PCHAR (QUOTE AN ADJUNCTIVE PHRASE "))

AN UNTENSED VERSB "
(PCHAR (QUOTE A QUESTIQN VERB, BDVERB, 02 ")
(PCHAR (QUOTE "
(PCHAR (QUOTE "
(PCHAR (QUOTE

(TERPRI)))

DETERMINER
THE WORD °*THERE'

"
L]
L
"
(PCHAR (QUOTE "
"
L]
"
" A NOUN PHRASE "

-~ O W W —
. . P

Lo O

VY ATYS U

—— T

IS

N
a3l bt

2t b m LA,

R i aiini

y VT B o TR canics " - ‘o T

87

(3/
((WRD HOW)
(; In a question, the 'HOW' must be followed by ar adjective,
adverd, or verb.)

4 3
|
R e —‘:—'J

(PCHAR (QUOTE " THE WORD 'HOW' MUST BE FOLLOWED BY AN "))

(PCHAR (QUOTE " ADJECTIVE, AN ADVERB, OR A VERB, AS IN: "))

(PCHAR (QUOTE " HOW BIG IS... "))
] (PCHAR (QUOTE " HOW QUICKLY CAN... "))
3 (PCHAR (QUOTE " HOW DID THEY... "))
] (TERPRI)))
]

(S/NP/1

((AND (CAT V)
(EQ (GETR COMPLTYPE)
(QUOTE FOR)))
(; A 'FOR' Complement is expected. The verb must be a present
participle.)
(PCHAR (QUOTE " IN A 'FOR COMPLEMENT', THE VERB MUST BE A "))

(PCHAR (QUOTE " PRESENT PARTICIPLE, AS IN: "))
(PCHAR (QUOTE " ...FOR 'PRINTING' MESSAGES... "M
(TERPRI))

(CAND (CAT V)
(EQ (GETR COMPLTYPE)
(QUOTE TO)))
(; A '"TO' Complemenrt is expected. The verb must be urtenrsed.)
(PCHAR (QUOTE ™ IN A 'TO COMPLEMENT', THE VERB MUST BE AN ™))

(PCHAR (QUOTE "™ INFINITIVE, AS IN: ")
(PCHAR (QUOTE " ...TO 'BE' AN ERROR... ")
(TERPRI))

((CAT V)

(; If we do not have a complement as ir the cases above, the
verb must not be a present participle.)

(PCHAR (QUOTE " THE VERB HERE CAN BE ANY FORM OTHER "))

(PCHAR (QUOTE " THAN A PRESENT PARTICIPLE. ™))

(TERPRI))

((EQ (CAR (GETR ?))
(QUOTE QADV))

(; We do not have a verb. {(The previous three corditiors
handled all verbd possibilities.) And we just had a
question-adverb, such as 'WHEN'.)

(PCHAR (QUOTE " IN A QUESTION, THE WORD ' "))

(PRINT-ANY=-STRING (CDR (GETR 7)))

(PCHAR (QUOTE " ' SHOULD BE FOLLOWED BY A VERB. "))

(iTERPRI))

2; Expecting a verb.)

(PCHAR (QUOTE " A VERB FORM IS EXPECTED HERE. "))
(TERPRI)))

|

88

(; A 'NOT' is valid here orly if an adverd has beer encountered.
A 'NOT' before the adverb has already been taker care cf
ir state S/FVERB.)

(PCHAR (QUOTE ™ THE *‘NOT' HERE DOES NOT MAKE SENSE. A "))

(PCHAR (QUOTE " 'NOT' CAN BE HERE ONLY IF AN ADVERB "))

(PCHAR (QUOTE " HAS BEEN FOUND. "))

(TERPRI))

((AND (CAT V)
{(CHECKF V PRESPART)
(NOT (ASPECTVERB HEAD)))

(; A present participle here is alright as long as the head verd
is ar aspect verb. (e.g., 'IS GOING®', 'BEGIN RUNNING'))

(PCHAR (QUOTE "™ THE PRESENT PARTICIPLE ' ™))

(PRINT=-ANY-STRING LEX)

(PCHAR (QUOTE " ' CANNOT BE UNDERSTOQD BECAUSE IT MUST 3E "))
(PCHAR (QUOTE " PART OF AN ASPECT VERB PHRASE, SUCH AS: "))
(PCHAR (QUQTE HE BEGAN 'RUNNING'... "))
(PCHAR (QUOTE " I WILL START 'SINGING'... "))
(TERPRI)

(PCHAR (QUOTE ™ THE VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' IS NOT A ASPECT VERB. "))
(TERPRI))
((AND (CAT V)
(CHECKF V UNTENSED)
(NULL (CDR (GETR ASPECT)))
(NULL (GETR MODAL)))
(; Ar untensed verd here is alright only if we had a modal.
e.g., I MIGHT 'GO'...)
(PCHAR (QUOTE " FOR AN UNTENSED VERB SUCH AS ' "))
(PRINT=-ANY-STRING LEX)
(PCHAR (QUOTE " ' TO BE HERE, WE MUST HAVE HAD A ™))

(PCHAR (QUQTE " MODAL VERB, SUCH AS: "))
(PCHAR (QUOTE » I '"MIGHT' GO... "))
(PCHAR (QUOTE " HE *WILL' EXPLAIN... "))

(TERPRI))
((AND (CAT W)
(OR (EQREG HEAD BE)
(EQREG HEAD GET)
(EQREG HEAD BECOME))
(CHECKF V PASTPART)
(NOT (VPASSIVE %)))
(; If we had a form of 'BE', 'GET', or 'BECOME', the past
participle here should be part of a passive construction.
e.g., IT WAS *'SENT'...)
(PCHAR (QUOTE " BECAUSE OF THE HEAD VERB ' ™))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' AND THIS PAST PARTICIPLE ' ™))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE "™ ', A PASSIVE CONSTRUCTION IS EXPECTED. "))
(PCHAR (QUOTE * HOWEVER, THE PAST PARTICIPLE VERB HERE ™))
(PCHAR (QUOTE " IS NOT ABLE TO BE PART OF A PASSIVE PHRASE. "))
(TERPRI))
((AND (CAT V)
(OR (EQREG HEAD BE)
(EQREG HEAD GET)

/ AD-A091 043 DELAWARE UNIV NEWARK DEPT OF COMPUTER AND INFORMATI--ETC F/6 9/2
A CASE STUDY IN NATURAL LANGUAGE PROCESSING: THE RUS SYSTEM,.(U)
MAY 80 A W MANSKY F“9620-79-C-0131
UNCLASSIFIED AFOSR=TR=80~-103%

i
|
{
o

END

J‘

L g8 2.5
I £ g
————] E lﬁ'ﬁ I_
£ oL |20

m“) £ e
e MLS
Lo

Ii2s flis mis

MICROCOPY RESOLUTION TEST CHART
NATIONAL GUREAU OF STANDARDS-1963-A

.

-

¢
f
v
‘
*
L}
&
H

89

(EQREG HEAD BECOME))
(VPASSIVE %)
(NOT (CHECKF V PASTPART)))

(; As ir the sbove case, except that the verb is marked as
being able to be ir a passive construction, but it is
not marked as beirg a past participle.)

(PCHAR (QUOTE " A PASSIVE CONSTRUCTION IS EXPECTED. THE "))

(PCHAR (QUOTE " HEAD VERB BEING ' *))

(PRINT=-REG (GETR HEAD))

(PCHAR (QUOTE " ' AND THE VERB ' "))

(PRINT=-ANY-STRING LEX)

(PCHAR (QUOTE " 'BEING ABLE TO BE PASSIVE INDICATES THAT THE "))

(PCHAR (QUOTE " LATTER SHOULD BE A PAST PARTICIPLE, BUT "))

(PCHAR (QUOTE " IT IS UNABLE TO BE INTERPRETED AS ONE. ™))

(TERPRI))

((AND (CAT V)
(EQREG HEAD HAVE)
(NULL (CDR (GETR ASPECT)))
(NULL (CHECKF V PASTPART)))

(; If there has beer a form of the verb 'HAVE', a past
participle is expected.)

(PCHAR (QUOTE "SINCE THERE WAS A FORM OF THE VERB "))

(PCHAR (QUOTE * 'HAVE', A PAST PARTICIPLE IS EXPECTED HERE, "))

(PCHAR (QUOTE " AS IN: ")

(PCHAR (QUOTE * HE HAS 'GONE'... "))
(PCHAR (QUOTE " I HAVE 'SEEN'... "))
(TERPRI)

(PRINT<-ANY-STRING LEX)

(PCHAR (QUOTE " IS NOT A PAST PARTICIPLE "))

(TERPRI))

((AND (OR (CAT ADJ)
(WRD (AS MORE LESS)))
(NOT (COPULA HEAD)))

(; An adjective or one of 'AS', 'MORE', or 'LESS' irndicates the
beginning of an adjective group if the head verd was a
copula. e.g., IT BECAME *MORE' THAN... THIS IS 'AS®
LARGE A PROBLEM...)

(PCHAR (QUOTE " THE WORD ' "))

(PRINTANY-STRING LEX)

(PCHAR (QUOTE " ' INDICATES THE BEGINNING OF AN ADJECTIVE ™))

(PCHAR (QUOTE * GROUP, BUT THE HEAD VERB MUST BE A COPULA- ™))

(PRINT-REG (GETR HEAD))

E;CHAR (QUOTE " IS NOT ONE. EXPECTING PHRASES OF THE FORM: ™))

ERPRI)

(PCHAR (QUOTE * IT IS ")

(PRINT=-ANY-STRING LEX)

(PCHAR (QUOTE " ... ™))

(TERPRI) :

(PCHAR (QUOTE ™ WHERE THE WORD ' "))

(PRINT-ANY-STRING LEX)

(PCHAR (QUOTE " ' IS THE BEGINNING OF AN ADJECTIVE PHRASE. "))

(;TERPRI))

(; Blocked at this state for other reasons. Because there are
so mary asrcs (12) and corditions (24) at this state,
orly the eight (most likely?) conditions asbove are

T

90

checked. If nore of those are applicadble, a list of
what was expected is printed.)

3 (PCHAR (QUOTE " AT THIS POINT IN THE SENTENCE, ONE OF "))
(PCHAR (QUOTE " THE FOLLOWING WAS EXPECTED. "))

] (TERPRI)

: (PCHAR (QUOTE 1. AN ADJECTIVE, 'AS‘', 'MORE', OR °*LESS'
(PCHAR (QUOTE FOLLOWING A COPULA VERB,

(PCHAR (QUOTE (IT IS 'LARGER' THAN...)

(PCHAR (QUOTE (THEY SEEMED °'MORE' HAPPY...)
(PCHAR (QUOTE 2. 'TO' FOLLOWING AN ASPECTYPE VERS,
(PCHAR (QUOTE (WE STARTED 'TO' LEAVE...)
(PCHAR (QUOTE 3. AN UNTENSED PAST PARTICIPLE,

(PCHAR (QUOTE (*COME®, 'RUN', ETC.)

(PCHAR (QUOTE 4. AN UNTENSED VERB FOLLOWING A MODAL,
(PCHAR (QUOTE (THEY SHOULD 'GO'...)

(PCHAR (QUOTE (I WILL °*SHOW'...)

~ AT ASINC S W+ 8 S e

2 33 33332333

e e " N i Al N N S P Nl o o
o N N o N et Nt N P Nt "t et Nl N

(PCHAR (QUOTE ™ 5. A PRESENT PARTICIPLE FOLLOWING AN

(PCHAR (QUOTE " ASPECTYPE VERB,

(PCHAR (QUOTE " (THEY BEGAN 'RUNNING'...)

(PCHAR (QUOTE " 6. A PAST PARTICIPLE IN A PASSIVE

(PCHAR (QUOTE CONSTRUCTION AFTER 'BE', 'GET’, -
(PCHAR (QUOTE * OR 'BECOME’, ")) 2
(PCHAR (QUOTE " (IT WAS 'GIVEN'...) ")) ®
(PCHAR (QUOTE " (THEY ARE 'AMUSED' BY...) ")) ’
(PCHAR (QUOTE " 7. A PAST PARTICIPLE FOLLOWING °'HAVE®, "))

(PCHAR (QUOTE *» (HE HAS °'GIVEN' EVERYTHING...) ")) ;
(PCHAR (QUOTE " (I HAVE °'CANCELLED®' THE...) "))

(PCHAR (QUOTE " 8. AN INTEGER OR COMPARATIVE FOLLOWING °'BE', ")) i
(PCHAR (QUOTE " (THERE ARE 'FIVE'...) " :
(PCHAR (QUOTE ™ 9. AN ADVERB. ")))
(PCHAR (QUOTE » (HE RAN °*QUICKLY'...) "M i
(TERPRI) 4
(PRINT-ANY-STRING LEX) :

| (PCHAR (QUOTE " IS NOT ABLE TO BE INTERPRETED AS ANY OF THESE. "))
[| (TERPRI)))

e b S oy o b e

P e o

mon m e

91

(ASPECT/TO

((AND (CAT V)
(NOT (CHECKF V UNTENSED)))
(; ASPECT VERB followed by 'TO' should then be followed by an
untensed verb. This one is tensed.)

(PCHAR (QUOTE "™ AN 'ASPECT® VERB, SUCH AS ' "))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE * °*, FOLLOWED BY 'TO', EXPECTS AN UNTENSED VERB "))
(PCHAR (QUOTE ™ TO BE NEXT, AS IN: "))
(TERPRI)

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE ™ TO LEAVE... "))

(TERPRI)

(PRINT-ANY-STRING LEX)

(PCHAR (QUOTE " IS NOT UNTENSED. "))

(TERPRI))
((NOT (CAT W))

(; As above, except we don't ever have a verbd.)

(PCHAR (QUOTE ™ AN 'ASPECT' VERB FOLLOWED BY °'TO' EXPECTS AN
(PCHAR (QUOTE " UNTENSED VERB NEXT, AS IN:

(TERPRI)

(PCHAR (QUOTE » IT BEGAN TO 'GROW'. "))
(TERPRI)

(PRINT-ANY-STRING LEX)

(PCHAR (QUOTE " IS NOT A VERB., ™))

(TERPRI)))

E
-~

(VP/ASSIGNHEAD

((CAT PREP)

(; A prepositionr is permitted here if the verd car take one as
part ¢f the verd ('START UP' THE CAR.) or as anr object
of the verd. (WE LOOKED ‘'UP'.))

(PCHAR (QUOTE " A PREPOSITION SUCH AS * ™))

(PRINT-ANY-STRING LEX)

(PCHAR (QUOTE " ' CAN BE UNDERSTOOD HERE ONLY IF THE VERB * ™))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE * ' CAN TAKE A PREPOSITION AS A VERB PART, AS "))

(PCHAR (QUOTE » IN °'START UP*', OR AS AN OBJECT, AS IN "))

(PCHAR (QUOTE " 'LOOK DOWN*, NEITHER ONME IS THE CASE. "))

(TERPRI))

((NOT (OR (AND (EQREG STYPE POSS~ING)
(ASSIGNQ HEAD
(OR (GetPATHR HEAD HEAD: PARTICIPLE/OF)
(GetPATHR HEAD HEAD))
HEAD VERBCASES))
(ASSIGNQ HEAD HEAD HEAD VERBCASES)
(ForceParseflLG)))

(; Hoping to go get objects after firishing verd, dut verd does
not check ocut semantically.)

(PCHAR (QUOTE ® THE VERB ' "))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE " * CANNOT BE UNDERSTOOD AS THE MAIN VERB "))

(PCHAR (QUOTE " IN THE PHRASE. "))

(TERPRI))

((NOT (OR (EQREG STYPE IMPERATIVE)

pyTrERS

iR T SRR, 5. .M TR

(EQREG STYPE POSS~ING)
(AND (GETR SUBJCOMP)
(ASSIGNQ SUBJCOMP HEAD SUBJCOMP VERBCASES))
(AND (ASSIGNQ FIRSTNP HEAD SUBJECT VERBCASES)
(SETR SUBJECT FIRSTNP))
(ForceParseflG)))

(; The noun phrase in register FIRSTNP does not check semantically
with the verd ipr HEAD. Also, if there is a subject
complement in SUBJCOMP, it also does not check out
semantically.

(COND ((GETR SUBJCOMP)

(PCHAR (QUOTE ™ THE PHRASE ' "))

(PRINT-REG (GETR SUBJCOMP))

(PCHAR (QUOTE * ' IS UNABLE TO BE UNDERSTOOD AS A "))

(PCHAR (QUOTE " SUBJECT COMPLEMENT WHEN USED WITH THE VERB * "))
(PRINT=REG (GETR HEAD))

(PCHAR (QUOTE * * , "))

(TERPRI)))

(PCHAR (QUOTE " THE NOUN PHRASE ' ™))

(PRINT-REG (GETR FIRSTNP))

(PCHAR (QUOTE " ' CANNOT BE INTERPRETED AS THE SUBJECT OF A ™))

(PCHAR (QUOTE " SENTENCE WHOSE VERB IS ' ™))

(PRINT<REG (GETR HEAD))

(PCHAR (QUOTE " * . ™))

(;TERPRI))

(; The sbove conditiors hardle ABORTs of paths into this state;
if the SUSPENDs at this state are taker, the verb ir HEAD
does not make sense semantically with FIRSTNP or SUBJCOMP,
?ut cho)ForeoPlrso was True, 30 a syntactic assigrment was

orced.

(PCHAR (QUOTE " WITH THE VERS ' "))

(PRINT-REG (GETR HEAD))

2;2:::1;0007: * ' THE FOLLOWING CANNOT BE UNDERSTOOD: "))

(COND ((GETR SUBJCOMP)

(PRINT-REG (GETR SUBJCOMP))
(PCHAR (QUOTE ™ AS A SUBJECT COMPLEMENT. ™)))
(T (PRINT-REG (GETR FIRSTNP))
(PCHAR (QUOTE " AS THE SUBJECT. "))))
(TERPRI)))

PTG e

93

{VP/UNTENSEDandPASTPART
((AND (OR (EQREG HEAD BE)
(EQREG HEAD GET)
(EQREG HEAD BECOME))
(NOT (VPASSIVE #)))
(; If we have ar untensed past participle with a HEAD of 'BE',
'GET', or 'BECOME', thern we have a passive corstructior -
blocked here if participle not marked as being able to be
passive.)
(PCHAR (QUOTE " THE VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' FOLLOWED BY THE PARTICIPLE * ™))
(PRINT<ANY-STRING LEX)
(PCHAR (QUOTE " ' INDICATES A PASSIVE CONSTRUCTION, BUT THE ™))
(PCHAR (QUOTE " PARTICIPLE CANNOT BE PASSIVE. ™))
(éTERPRI))
(; If not the above case, the passive failed because HEAD was
not one of the above three or the modal conditior (the
alternat: arc) was not met. What was expected is
rirted
(PCHAR (QUOTE " AN UNTENSED PAST PARTICIPLE, SUCH AS ' "))
(PRINT-ANY-STRING LEX)
Egggssxgquors " ', CAN BE UNDERSTOOD HERE ONLY IF EITHER: "))
(PCHAR (QJUOTE 1. THERE IS A MODAL VERB AND NO
(PCHAR (QUOTE ASPECT VERB.
(PCHAR (QUOTE (THEY °'MIGHT COME.')
(PCHAR (QUOTE OR 2. THE MAIN VERB 1S 'BE', 'GET', OR
(PCHAR (QUOTE 'BECOME' AND THE PHRASE IS PASSIVE.
(PCHAR (QUOTE (IT *WAS SET'.)
(TERPRI)))

233333
At o N

e

(VP/GETOBJ
(CAND (WRD (FOR TO))
(NOT (FORTOCOMP HEAD)))

(; We expect a FOR/TO Complement, but the verd ir HEAD canrot
take such a complement.)

(PCHAR (QUOTE » THE WORD ' ™))

(PRINT«ANY-STRING LEX)

(PCHAR (QUOTE * ' HERE INDICATES THE BEGINNING OF A COMPLEMENT. "))

(PCHAR (QUOTE " SUCH AS 'FOR YOU TOQ FINISH.'; HOWEVER,THE VERB ' ™))

(PRINT=REG (GETR HEAD))

(PCHAR (QUOTE " CANNOT HAVE SUCH A COMPLEMENT. ™))

(TERPRI))

((AND (WRD THAT)
(NOT (THATCOMP HEAD)))

(; If we have the word 'THAT', ther the verd ir HEAD should be
THATCOMP. The word 'THAT' does rot have to be here for a
THATCOMP, though. If the verd is not marked as a
THATCOMP and we have one without the 'THAT', we can't
tell that here. In that case, the last conditior will

print uhat was expected 8t this state.)
(PCHAR (QUOTE THE *'THAT' INDICATES THE BEGINNING OF A ")) N
(PCHAR (QUOTE ™ COMPLEMENT, BUT TNE VERB * ™))

OV

L N Ry A, N AT e e

94

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE ™ ' CANNOT HAVE A 'THAT COMPLEMENT'. ®))

(TERPRI))

((NOT (OR (VTRANS HEAD)
(DELFORTOCOMP HEAD)))

(; Expecting the odject of a trarsitive verd, but the verd is
neither marked as transitive ror able to take a
complement such as: 'I WANTED YOU TO FINISH'.)

(PCHAR (QUOTE " UNABLE TO LOOK FOR AN OBJECT OF * ™))

(PRINT=REG (GETR HEAD))

(PCHAR (QUOTE " * BECAUSE IT IS NOT TRANSITIVE AND CANNOT "))

E;gﬂAR ;QUOTE " TAKE A COMPLEMENT WITH A DELETED ‘*FOR*, SUCH AS: *))

RPRI

(PCHAR (QUOTE-" I WANT YCOU TO FINISH. "))

(TERPRIL)

(PCHAR (QUOTE " ONF OR BOTH OF THESE CONDITIONS MUST BE TRUE. "))

(;TERPRI))

(; Blocked here for reasons other than thcse above. Incomplete
sentence, no roun phrase for the cbject, etc. What was
expected st this point iy printed.)

(PCHAR (QUOTE " TRYING TO FIND AN QBJECT OF ' ™))

(PRINT=-REG (GETR HEAD))

g;gg:: §QUOTE " ' , WE NEED TO HAVE ONE OF THE FOLLOWING:

I

2
~
~

(PCHAR (QUOTE * 1. A FOR/TO COMPLEMENT "))
(PCHAR (QUOTE * (IT IS POSSIBLE 'FOR ME TO...") "))
(PCHAR (QUOTE " 2. A THAT COMPLEMENT "))
(PCHAR (QUOTE = (I KNOW °*THAT YOU WILL...') "))
(PCHAR (QUOTE * (I KNOW 'YOU WILL...") "))
(PCHAR (QUOTE * 3. A NOUN PHRASE - BEGINNING HERE, OR "))
(PCHAR (QUOTE " HELD FROM EARLIER IN THE SENTENCE "))
(PCHAR (QUOTE * (I PARSED 'THE SENTENCE'.) "))
(TERPRI)))

(VP/0BJ

(CAND (WRD (THAT FOR TO))
(EQ (GetPATHR SUBJECT HEAD HEAD)
(QUOTE IT))
(NOT (SUBJCOMP HEAD)))
(; Lookirg for the complement Of ar 'IT' phrase. The HEAD verd
must be able to take s SUBJCOMP. e.g., It is crazy
'‘for you to parse this'.)
(PCHAR (QUOTE ™ THE WORD ' "))
(PRINT=ANY-STRING LEX)
(PCHAR (QUOTE " ' INDICATES THE BEGINNING OF A COMPLEMENT OF "))
(PCHAR (QUOTE " THE 'IT' PHRASE, BUT THE VERB ' ™))
(PRINT=REG (GETR HEAD))
(PCHAR (QUOTE " ' CANNOT MAVE SUCH A COMPLEMENT. ™))
(TERMRI))
(CAND (NOT (TOCOMP HEAD))
(OR (WRD (NOT TO))
(AND (FMEMB (NEXTWRD)
(QUOTE (NOT TO)))
(CATS (QADV QUESPRO)))))

o e 1 A TS - ey,

(: Having a 'TO' or 'NOT' here indicates the beginning of a
modifying phrase that acts as the object. I told Johrn
'to read the book' or We will ask her 'rot to reveal
the secret'. However, the HEAD verd will rot allow
such a complement.)

(PCHAR (QUOTE " THE ' ™))

(COND ((WRD (NOT TO))

(PRINT-ANY=STRING LEX))
(T (PRINT-ANY-STRING LEX)
(PRINT-ANY-STRING NEXTWRD)))

(PCHAR (QUOTE " ' SIGNALS THE BEGINNING OF A COMPLEMENT, "))

(PCHAR (QUOTE "™ AS IN: "))

(TERPRI)

(PCHAR (QUOTE ® I ASKED YOU *'TO READ THE BOOK'. ™))

(PCHAR (QUOTE ™ SHE TOLD US 'HOW TO DO THAT'. "))

(TERPRI)

(PCHAR (QUOTE " HOWEVER, THE VERB ' "))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE " ' CANNOT HAVE SUCH A COMPLEMENT. "))

(TERPRI))

((AND (TOCOMP HEAD)
(OR (WRD (NOT TO))}
(AND (FMEMB (NEXTWRD)
(QUOTE (NOT T0)))
(CATS (QADV QUESPR0O)))))

(; As above, except the verb was marked as a TOCOMP. The push
was successful and we returned back. However, orne of
two aborts ended the processing of this path.)

(COND ((NOT (ASSIGNQ ® HEAD TOCOMP VERBCASES))

(PCHAR (QUOTE " THE 'TO-COMPLEMENT®' PHRASE ' "))
(PRINT=ANY-STRING *)

(PCHAR (QUOTE " * CANNOT BE UNDERSTOOD WHEN USED "))
(PCHAR (QUOTE ™ WITH THE VERB ' ™))

(PRINT=-REG (GETR HEAD))

(éPCHAR (QUOTE " * . "))

(PCHAR (QUOTE ™ THE NOUN PHRASE ' ™))
(PRINT-REG (GETR 0BJ?))
(PCHAR (QUOTE " * CANNOT BE UNDERSTOOD AS AN INDIRECT "))
(PCHAR (QUOTE " OBJECT OF THE VERB ' "))
(PRINT=-REG (GETR HEAD))
(PCHAR (QUOTE = ' . ™))))
(TERPRI))
((AND (CAT PREP)
(NOT (VPARTICLE HEAD ®)))
(; A prepositior here must be with a verd that {s marked as taking
particles as ar "auxiliary" part of the verd, as ir
'*START UP', 'CLEAN UP', etc.)
(PCHAR (QUOTE ™ A PREPOSITION, SUCH AS ' ™))
(PRINT=-ANY-STRING LEX)
(PCHAR (QUOTE " ', AT THIS POINT, SHOULD BE AN AUXILIARY "))
(PCHAR (QUOTE ™ PART OF THE VERB, AS IN: "))
(TERPRI)
(PCHAR (QUOTE * +.+'CLEAN UP' YOUR ROOM... ")
(PCHAR (QUOTE ++«"START UP' THE CAR... "))
(TERPRI)

P spps XY e SR SRR

3

96

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE ", HOWEVER, CANNOT HAVE SUCH AN AUXILIARY "))

(PCHAR (QUOTE " PREPOSITION. ™))

(TERPRI))

((AND (PossibleNP? T)
(NOT (TAKEINDOBJ HEAD)))

(; The noun phrase begirning here is the object and what is in
register OBJ? is the indirect object if the verdb car take
an indirect object. This verd is not marked as takirg ar
indirect object.)

(PCHAR (QUOTE * THE NOUN PHRASE BEGINNING HERE IS EXPECTED ™))

(PCHAR (QUOTE " TO BE THE OBJECT, WHILE ' ™))

(PRINT-REG (GETR 0BJ?))

(PCHAR (QUOTE " ' IS EXPECTED TO BE THE INDIRECT OBJECT. "))

(PCHAR (QUOTE * HOWEVER, THE VERB * *))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE " ' CANNOT HAVE AN INDIRECT OBJECT. ™))

(TERPRI))

((AND (TAKEINDOBJ HEAD)
(PossibleNP? T))

(; As above, except that the verd was marked as takirg ar
indirect object, the noun phrase was successfully
pushed for, but onre of two aborts ended the processing
of this path.)

(COND ((NOT (ASSIGNQ ®* HIAD OBJECT VERBCASES))

(PCHAR (QUOTE " THE NOUN PHRASE ' ™))

(PRINT=-ANY-STRING ®)

(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE OBJECT "))

(PCHAR (QUOTE " OF THE VERB ' "))
(PRINTREG (GETR HEAD))
éPCHAR (QUOTE ™ * . ™M)

(PCHAR (QUOTE " THE NOUN PHRASE ' ™))
(PRINT-REG (GETR 0BJ?))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE INDIRECT "))
(PCHAR (QUOTE ™ OBJECT OF THE VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' . ™))))

(TERPRI))

((AND (GETR 0BJ?)

(NOT (ASSIGNQ OBJ? HEAD OBJECT VERBCASES)))

(; A simple case of the object being inr OBJ?, except that it does
not check semantically with the verd.)

(PCHAR (QUOTE " THE NOUN PHRASE ' "))

(PRINT-REG (GETR 0B8J?))

(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE OBJECT OF "))

(PCHAR (QUOTE " THE VERB ' "))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE » * , "))

(

(TERPRI))
(T

(; Blocking at this state due %o any reasor other thar those
handled above causes a list of what was expected at this
state to bDe printed.)

(PCHAR (QUOTE ™ ONE OF THE FOLLOWING WAS EXPECTED. "))
(TERPRI)

ST L Y A Ay NS O o AN

AR it T

o R ST

(PCHAR (QUOTE " 1. A SUBJECT COMPLEMEAT (OF A PHRASE "))
(PCHAR (QUOTE " STARTING WITH 'IT) BEGINNING "))
‘ (PCHAR (QUOTE " WITH 'FOR*, °'THAT', OR 'TO' "))
F B (PCHAR (QUOTE " (IT IS SILLY *FOR US TO...') "))
[(PCHAR (QUOTE " 2. A 'TO' COMPLEMENT "))
(PCHAR (QUOTE (I TOLD YOU 'TO READ...') "))
(PCHAR (QUOTE " 3. A PREPOSITION AS PART OF THE VERB "))
(PCHAR (QUOTE " (HE WILL START 'UP'...) "))
(PCHAR (QUOTE " 4. A NOUN PHRASE ACTING AS THE OBJECT "))
(PCHAR (QUOTE " (I GAVE YOU 'THE...") "))
(TERPRID))
y (VP/THAT?

((AND (OR (VTRANS HEAD)

{ (DELFORTOCOMP HEAD))

= (PossibleNP? T))

(; A transitive verd's object is pushed for (NP=poun phrase)
and successfully found, but an abort was executed because
the phrase canrot be ar object.)

(PCHAR (QUOTE ™ THE NOUN PHRASE ' "))

(PRINT=ANY-STRING @)

(PCHAR (QUOTE ™ ' CANNOT BE AN OBJECT OF ANY VERB. "))

éTElPRI))

[

(

T

(; The embedded sentence was pushed for snd successfully
found, but it does not check semantically as beirg a
valid complement to the verd of the main clause.)

(PCHAR (QUOTE * THE SENTENCE: "))

(TERPRD)

(PRINT-ANY-STRING @)

(TERPRI) .

(PCHAR (JQUOTE " CANNOT BE UNDERSTOOD AS A 'THAT COMPLEMENT' ™))

(PCHAR (QUOTE " PHRASE OF THE VERB ' ™))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE = * . "))

{TERPRI)))

s 2y

(VP/HEAD/NP
({NOT (OR (DELFORTOCOMP HEAD)
(DELTOCOMP HEAD)
(VTRANS HEAD)))

(; The HEAD verd is not marked ir ary one of the three ways.
Each of the three arcs from this state has one of the
corditiors on it. Therefore, we are blocked.)

(PCAAR (QUOTE " PARSING CANNOT PROCEED BECAUSE THE VERB ' "))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE " ' IS NOT SUFFICIENTLY DESCRIBED IN THE "))

(PCHAR (QUOTE ~ OICTIONARY. WE ARE EXPECTING A COMPLEMENT "))

(PCHAR (QUOTE * (DELFORTOCOMP OR DELTOCOMP) OR THE OBJECT ™))

(PCH:R (QUOTE ™ OF A TRANSITIVE VERB (VTRANS) AT THIS POINT. "))

(TERPRI)))

A TR WA e Ly

(S/fénssuut
(; Trying to resume processing to complete a noun phrase, as
in: ‘'Wnat man did I meet ir England who knew Peter?*
The 'who' sigrals that the question is really not
firished yet, and that there are more constituents %o
the NP 'What man'.)
1 (PCHAR (QUOTE " CANNOT RESUME PROCESSING OF THE PHRASE ' ™))

b I PPN S JTI R ey ane

1 (PRINT-REG (GETR ?))
(PCHAR (QUOTE * * TO PICK UP THE REST OF ITS CONSTITUENTS. "))
(TERPRI)))
(s/s

((AND (WRD (FOR TO))
(GETKEY (QUOTE FORTOCOMP)
;- HEAD VERBCASES))
3 (; The FOR/TO complement for HEAD was pushed for, successfully
: found, but is semantically invalid.)
; (PCHAR (QUOTE " THE PHRASE ' "))
i (PRINT-ANY-STRING *)
T (PCHAR (QUOTE " * CANNOT BE UNDERSTOOD AS A COMPLEMENT "))
! (PCHAR (QUOTE " OF THE VERB ' "))
i (PRINT-REG (GETR HEAD))
! (PCHAR (QUOTE " ' . *))
i (TERPRI))
!

I N N e SRR

7 -

((AND (NQT (CAT PREP))
(PossibleLOCATION? T))
(; A location phrase was pushed for, successfully found, but {is
: not semantically valid with the main verd ir HEAD)
N (PCHAR (QUOTE " THE 'LOCATION' PHRASE ' ™))
o (PRINT«-AKY-STRING #)
= (PCHAR (QUOTE " ' CANNOT SE UNDERSTOOD IN A SENTENCE "))
: (PCHAR (QUOTE " WHERE THE MAIN VERB IS ' "))
(PRINT-RES (GETR HEAD))
(PCHAR (QUOTE ™ * . "))
(TERPRI))
((AND (NULLR LASTPUNCT)
(GETKEY (QUOTE <TIME>)
HEAD VERBCASES)
(PossidbleNP?))
(; A 'time nour phrase' (TIMENP) was pushed for, found, but is
not semartically valid.)
(PCHAR (QUOTE " THE °'TIME' NOUN PHRASE: ™))
(TERPRI)
(PRINT=ANY-STRING *)
(TERPRI)
(PCHAR (QUOTE " CANNOT BE UNDERSTOOD WITH THE VERB * ")) ‘
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE * * , ®))
(;TERPRI))

e T T o R

N g DS STV AR

(; There are many more ways ir which a parse car block here.
Some would be caused by a very urusual {rput strirg, others
! would be unable to be detected through simple conditions.
If none of the above conditions are the case, a list of

a4

(PCHAR (QUOTE

(PCHAR (QUOTE *

(TERPRI)
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(TERPRI)
(PCHAR (QUOTE
(PCHAR (QUOTE
(TERPRI)
(PCHAR (QUOTE
(PCHAR (QUOTE
(TERPRI)
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(TERPRI)
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(TERPRI)
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(TERPRI)
(TERPRI)
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(TERPRI)))

(S/S/PP

what is expected at this point is printed.)

AFTER HAVING COMPLETED A MAIN CLAUSE, ONE OF
THE FOLLOWING WAS EXPECTED.

1. A COMPLEMENT SEGINNING WITH °'FOR' OR 'TO’
(VERB MUST HAVE 'FORTOCOMP®' FEATURE)
I WALKED 'FOR THE FUN OF IT'. ™))

3 3
~—

2. AN ADVERB "))
I WALKED 'QUICKLY'. ™))

3. A PREPOSITIONAL PHRASE "))
I WALKED 'WITH MY FRIEND'. "))

4, A 'LOCATION' PHRASE "))
(VERB MUST HAVE '<LOCATION>' RULE) "))
I WALKED 'WHERE NO MAN HAS BEFORE'. "))

5. A 'TIME' PHRASE "))
(VERS MUST HAVE '<TIME>' RULE) "))
I WALKED 'THE OTHER DAY'. "))

6. AN ADJUNCT PHRASE "))

(VERB MUST HAVE APPROPRIATE ADJUNCT RULE "))
I WALKED, 'SINGING ALL THE WAY'. ™))

IF THE INPUT STRING DOES SATISFY ONE ™))

OF THE ABOVE CASES, THE SEMANTIC RULES "))
THAT WERE INVOKED EITHER DO NOT EXIST OR "))
WERE APPLIED AND FAILED; I.E., THE "))
CONSTITUENT THAT WAS FQUND DOES NOT "))
'MAKE SENSE' USING THE PRESENT LEXICON. ™))

(CAND (EQ (*# PREP)
(QUOTE TO))
(TAKEINDOBJ HEAD)
(NOT (ASSIGNQ (®® POBJ)

HEAD INDOBJ VERBCASES)))

(; The head of the prepositional phrase is 'TO'. We expect the
object of the preposition to be the indirect odject of
the full sentence, but it dos not check semantically.)

(PCHAR (QUOTE "™ THE OBJECT OF THE 'TO' PREPOSITIONAL PHRASE, ' ™))

(PRINT-ANY-STRING (*® POBJ))

(PCHAR (QUOTE ® ', CANNOT BE UNDERSTOOD AS THE INDIRECT "))

(PCHAR (QUOTE " OBJECT OF THE VERB ' ™))

(PRINT=-REG (GETR HEAD))

(PCHAR (QUOTE » * , n))

(TERPRI))

((AND (EQ (®® PREP)
(QUOTE TO))
(NOT (TAKEINDOBJ HEAD)))
(; The prepositior is 'TO' and the situstion as descrided ir the

T LY " o ——

100

previocous comment is expected; however, ir this case, the
HEAD verd cannot even take ar indirect object.)
(PCHAR (QUOTE " THE OBJECT OF THE 'TO' PREPOSITIONAL PHRASE, ' ™))
(PRINT-ANY-STRING (®** POBJ))
(PCHAR (QUOTE " ', IS EXPECTED TO BE THE INDIRECT OBJECT "))
(PCHAR (QUOTE " OF THE VERB. HOWEVER, *' "))
(PRINT=-REG (GETR HEAD))
(PCHAR (QUOTE " * CANNOT TAKE AN INDIRECT OBJECT. "))
(TERPRI))
((AND (EQ (%® PREP)
(QUOTE 8Y))
(NOT (PASSIVE? ASPECT))
(NOT (EQREG STYPE POSS=ING)))
(; In the case wnhere the preposition is 'BY', the object of the
preposition is expected to be the subject of the senrtence.
The sentence is passive or a "possession-ing" as ir: 'It
was thrown by Johr' or 'John's winring was erjoyed by
everyonre', This message and the next three messages
handle problems inr interpreting the object of 'BY’.
Here, we have neither passive ror "possession-ing".)
(PCHAR (QUOTE » THE OBJECT OF THE 'BY' PREPOSITIONAL PHRASE, ' ™))
(PRINT=-ANY-STRING (%® POBJ))

(PCHAR (QUOTE ™ ', IS EXPECTED TO BE THE SUBJECT OF THE "))

(PCHAR (QUOTE " SENTENCE. THERE MUST EITHER BE A PASSIVE "))

(PCHAR (QUOTE " CONSTRUCTION OR A POSSESSION-'ING' ")

(PCHAR (QUOTE ™ CONSTRUCTION AS IN: "))

(TERPRI)

(PCHAR (QUOTE " IT IS PARSED BY 'ME'. "))

EPCHAR gQUOTE " FRED'S WINNING WAS ENJOYED BY 'EVERYONE'. "})
TERPRI

(PCHAR (QUOTE ™ NEITHER IS THE CASE HERE. "))

(TERPRI))

((AND (EQ (®* PREP)
(QUOTE B8Y))
(PASSIVE? ASPECT))

(; We have the passive, but the object of 'BY' does not check
semantically as being the subject of the verd in HEAD.)

(PCHAR (QUOTE " IN A PASSIVE CONSTRUCTION, THE OBJECT OF THE "))

(PCHAR (QUOTE " 'BY' PREPOSITIONAL PHRASE IS EXPECTED TO BE THE ™))

(PCHAR (QUOTE " SUBJECT OF THE SENTENCE. HOWEVER, THE WORD ' ™))

(PRINT-ANY-STRING ("® POBJ))

(PCHAR (QUOTE " ' CANNOT 3E UNDERSTOOD AS THE SUBJECT WITH THE "))

(PCHAR (QUOTE " VERB ' ™))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE " ' , m))

(TERPRI))

(CAND (EQ (®*® PREP)
(QUOTE BY))
(EQREG STYPE POSS=-ING)
(NOT (ASSIGNQ FIRSTNP HEAD OBJECT VERBCASES)))

(; In a '"POSS-ING' sertence, the object of 'BY' is the sentence
subject and the FIRSTNP of the sentence is the sentence
object. Here the FIRSTNP does not check semantically as
the object with the verd in HEAD.)

(PCHAR (QUOTE " IN A POSSESSION-'ING' SENTENCE SUCH AS THIS, "))

(PCHAR (QUOTE " THE FIRST NOUN PHRASE IS EXPECTED TO BE THE "))

PPe v RS

(PCHAR (QUOTE ® OBJECT AND THE PREPOSITIONAL OBJECT IS "))

(PCHAR (QUOTE " EXPECTED T0 BE THE SUBJECT. “))

(TERPRI)

(PCHAR (QUOTE " HOWEVER, THE NOUN PHRASE *' ™))

(PRINT-REG (GETR FIRSTNP))

(PCHAR (QUOTE ” ' CANNOT BE UNDERSTOOD AS THE OBJECT OF THE "))

(PCHAR (QUOTE " VERB ' "))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE " * . "))

(TERPRI)

((EQ (#% PREP)
(QUOTE BY))

(; The only other way to block with 'BY' is as ir the case above,
except the FIRSTNP as the OBJECT checks out, but the
prepositional object as the SUBJECT doesn't.)

(PCHAR (QUOTE ™ IN A POSSESSION-'ING' SENTENCE SUCH AS THIS, "))

(PCHAR (QUOTE " THE FIRST NOUN PHRASE IS EXPECTED TO BE THE "))

(PCHAR (QUOTE " OBJECT AND THE PREPOSITIONAL OBJECT IS EXPECTED "))

(PCHAR (QUOTE ®* TO BE THE SUBJECT. ™))

(TERPRI)

(PCHAR (QUOTE ® THE NOUN PHRASE ' ™))

(PRINT-REG (GETR FIRSTNP))

(PCHAR (QUOTE " ' IS ABLE TO BE UNDERSTOOD AS THE OBJECT, BUT ' ™))

(PRINT-ANY-STRING (®* POBJ))

(PCHAR (QUOTE " ' CANNOT BE UKDERSTOOD AS THE SUBJECT WITH THE "))

(PCHAR (QUOTE " VERB ' ™))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE » * ., m))

(TERPRI))

((AND (EQ (®% PREP)
(QUOTE OF))
(NOT (EQREG STYPE POSS-ING)))

(; wWher the head of the prepositional phrase is 'OF', we expect
to have a possession-'ing' sentence. If the verd cannrot
have an 'OFSUBJECT', then the FIRSTNP (if there is one)
is the SUBJECT anrd the prepositional object is the OBJECT;
otherwise, there should not be a FIRSTNP and the
prepositional object is the SUBJECT. This first 'OF'
condition handles not having a possession-'irg' sentence.
The next three handle aborts due to the OBJECT and/or
SUBJECT not checking semantically.)

(PCHAR (QUOTE " A PREPOSITIONAL PHRASE STARTING WITH 'OF' AFTER ™))

(PCHAR (QUOTE " THE END OF THE MAIN CLAUSE CAN QONLY BE "))

(PCHAR (QUOTE ™ UNDERSTOOD IN A POSSESSION-'ING®' SENTENCE, ™))

”

(PCHAR (QUOTE ™ SUCH AS: ™))

(TERPRI)

(PCHAR (QUOTE " +-.JOHN'S SENDING OF THE MESSAGE... "))
(TERPRI))

((AND (EQ (®# PREP)
(QUOTE OF))

(NOT (OFSUBJECT HEAD))

(GETR FIRSTNP)

(NOT (ASSIGNQ FIRSTNP HEAD SUBJECT VERBCASES)))
(; FIRSTNP fails ss SUBJECT.)
(PCHAR (QUOTE " IN A POSSESSION-'ING' SENTENCE SUCH AS THIS, ™))
(PCHAR (QUOTE "™ THE 'OF' PREPOSITIONAL OBJECT IS THE OBJECT OF "))

?
]
1
§
3
}
;-
i

102

(PCHAR (QUOTE " THE SENTENCE AND THE PHRASE ' "))
(PRINT-REG (GETR FIRSTNP))
g;ggg:lgouorz » + 1S EXPECTED TO BE THE SUBJECT. "))
(PCHAR (QUOTE " HOWEVER, IT CANNOT BE UNDERSTOOD AS THE "))
(PCHAR (QUOTE ® SUBJECT WITH THE VERB ' ™))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " * . "))
(TERPRI))
((AND (EQ (%% PREP)
(QUOTE OF))
(NOT (OFSUBJECT HEAD)))
(; Prepositional Object fails as OBJECT.)
(PCHAR (QUOTE ™ IN A POSSESSION-'ING' SENTENCE SUCH AS THIS, "))
(PCHAR (QUOTE " THE 'OF* PREPOSITIONAL OBJECT IS EXPECTED "))
(PCHAR (QUOTE " TO BE THE OBJECT OF THE VERB. "))
(TERPRI)
(PCHAR (QUOTE ™ HOWEVER, ' ™))
(PRINT-ANY-STRING (®# POBJ))
(PCHAR (QUOTE "™ ' CANNOT BE UNDERSTOOD AS THE OBJECT WITH THE "))
(PCHAR (QUOTE " VERB ' ™))
(PRINT-REG (GETR HEAD))
(PCHAR (QU2TE " ' . ™))
(TERPRI))
((EQ (% PREP)
(QUOTE OF))
(; The only other way 'OF' car block is if the prepositional
object should be the SUBJECT, but it doesn't check out.)
(PCHAR (QUOTE » THE OBJECT OF 'OF' IS EXPECTED TO 83E ™))
(PCHAR (QUOTE ™ THE SUBJECT OF THE SENTENCE, BUT ' ™))
(PRINT-ANY-STRING (®* POBJ))
(PCHAR (QUOTE ™ ' CANNOT BE UNDERSTOOD AS THE SUBJECT WITH ' ™))
(PRINT-REG (GETR HEAD))
(PCHAR (QUCTE " * . "))
(éTERPRI))
(; If none of the above, the prepositional phrase begar with
a prepositior other thar 'TO', 'BY', or QF*, or it began
Wwith ore of those but did not need to be the SUBJECT or
OBJECT. Ir either case, s general prepositioral phrase
semartic check failed.)
(PCHAR (QUOTE " THE PREPOSITIONAL PHRASE BEGINNING WITH * ™))
(PRINT-ANY-STRING (*® PREP))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOCD WITH THE VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE ™ ' . "))
(TERPRI)))

2 ia s e Do, ot e s i

P il 8

& TP Fe

-

2P G AR T

Mot S~

103

(NP/PRO
(T

(; We can block here only if the pronoun carnot be understood
when used with the head nour and any other modifiers of
the head noun that there may be. The noun phrase is
believed to be ending with the pronoun.)

(PCHAR (QUOTE ™ THE PRONQUN ' ™))

(PRINT-ANY=-STRING LEX)

(PCHAR (QUOTE " * IS BELIEVED TO END THE NOUN PHRASE. THE "))

(PCHAR (QUOTE " NOUN PHRASE IS UNABLE TO BE UNDERSTOOD DUE "))

(PCHAR (QUOTE " TO INCOMPLETENESS OR INCONSISTENCY OF THE ™))

(PCHAR (QUOTE " MODIFIERS. "))

(TERPRI)))

P L

. DET/
(T
(; We car block here if 'NOT' was found and state DET/ was
re-entered; we are looking for (but not finding) a
determirer or an adverbd followed by a comparative.)
(PCHAR (QUOTE ™ THE WORD °'NOT® AS PART OF A DETERMINER PHRASE "))
(PCHAR (QUOTE " REQUIRES A DETERMINER, OR AN ADVERB FOLLOWED ™))
sPCHAR (QUOTE ™ BY A COMPARATIVE, AFTER IT; AS IN: ™))
TERPRI)
(PCHAR (QUOTE * NOT *THE' LEAST OF IT IS... "))
§P§H;RI§??OTE " NOT °'REALLY MORE THAN' THREE BOYS WERE... ™))
TERPR

.BASENP/NotVorADJ
((AND (CATS (NPR N))
(GETR ADVS)) :

(; We can have a noun or proper noun orly if we have already
used the adverbdbs with the adjective or participle they
modify. This aliows °'QUICKLY RUNNING' FRED and 'VERY
UGLY' DOG, but not 'QUICKLY FRED' or 'VERY DOG'.)

(PCHAR (QUOTE " THE NOUN ' "))

(PRINT=ANY=STRING LEX)

(PCHAR (QUOTE " ' IS UNABLE TO BE UNDERSTOOD HERE BECAUSE ™))

(PCHAR (QUOTE " THE ADVERB(S) ' ™))

(PRINT-REG (GETR ADVS))

(PCHAR (QUOTE * ' CANNOT BE PART OF THE NOUN PHRASE UNLESS ™))

(PCHAR (QUOTE " IT IS FOLLOWED BY A PARTICIPLE OR AN ™))

(PCHAR (QUOTE " ADJECTIVE, AS IN: "))

(TERPRI)
(PCHAR (QUOTE " «««'QUICKLY MELTING® BUTTER... "))
(PCHAR (QUOTE " .«.'VERY POOR' PERSON... "))
(TERPRI))

((AND (CAT YEAR)
(GETR ADVS))
(; As sbove, except that we have a year irstead of a roun.)
(PCHAR (QUOTE " THE YEAR ' ™))
(PRINT-ANY=STRING LEX)
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD HERE BECAUSE A "))
(PCHAR (QUOTE " PARTICIPLE OR AN ADJECTIVE IS EXPECTED AFTER ")) §
(PCHAR (QUOTE " THE ADVERB(S) ' ™))

PN,

BB

bl

PR)

104

(PRINT-REG (GETR ADVS))
(PCHAR (QUOTE " ', AS IN: ™))

(TERPRI)
(PCHAR (QUOTE » «+.'VERY EXCITING' 1980... "))
(PCHAR (QUOTE » ..."POLITICALLY WILD' 1974... "))
(TERPRI))

(CAND (CAT MONTH)
(GETR DET?))

{; For the month tO be the degirning of a date, there should be
no determiners.)

(PCHAR (QUOTE ™ EXPECTING THE MONTH ' *))

(PRINT=-ANY-STRING LEX)

(PCHAR (QUOTE " TO BE THE BEGINNING OF A DATE. HOWEVER, "))

(PCHAR (QUQTE " THERE CANNQT SE ANY DETERMINERS B3EFORE "))

(PCHAR (QUOTE " IT. HERE WE HAVE ' ™))

(PRINT=-REG (GETR DET?))

(PCHAR (QUOTE » * . "))

(TERPRI))

((AND (WRD (AND ,))
(EQ (CAAR {(GETR PREMODS))
(QUOTE NOUN)))

(; When usinrg ‘AND®' or *',' to corjoir something to s roun, the
somethinrg to be corjoined must alsc be a noun.)

(PCHAR (QUOTE ™ ONLY ANOTHER NOUN CAN BE CONJOINED "))

(PCHAR (QUOTE * WITH THE NQUN * "))

(PRINT-REG (GETR PREMODS))

(PCHAR (QUOTE " ', AS IN: "))

(TERPRI)

(PCHAR (QUOTE = THE FIRST ROBIN, FLOWER AND LEAF... "))

(TERPRI))

(CAND (WRD (AND ,))
(SELECTQ (CAAR (GETR PREMODS))
§§{§§SPAR1 PASTPART ADS) T)

(; Wher using 'AND' or ',' to conjoir something to a present
participle, past participle, or adjective, the
something to be conjoined must dDe a verd or an
ad jective.)

(PCHAR (QUOTE * A VERD OR ADJECTIVE 1S EXPECTED AFTER THE * ™))

(PRINT-ANY-STRING LEX)

(PCHAR (QUOTE ™ ' AS SOMETHING TO BE JOINED TO * ™))

(PRINT-REG (GETR PREMODS))

(PCHAR (QUOTE " ' . ™))

(TERPRI))

((WRD (AND ,))

(; If blocked at 'AND' or ',' for ary other reasor, attempting
sn {llegal conjunctior.)

(PCHAR (QUOTE ™ UNABLE TO FORM THE CONJUNCTION. ™))

(PRINT-REG (GETR PREMODS))

(PCHAR (QUOTE " CANNOT HAVE ANY JOINED PHRASES. "))

(TERPRI))

((CAT V)

(; We should rot have a verd here. Valid ellipsis such as
'THE LARGEST WAS...' is handled ir NP/PartitiveDET.
Here we would have 'THE WAS...'. There {s alsc the
possidility of a present participle or past participle

T =

-

105

which was not marked as dbeing such.)

(PCHAR (QUOTE ™ A VERB CANNOT BE UNDERSTOOD HERE. "))
(PCHAR (QUOTE " THE NOUN PHRASE WAS BEING CONSTRUCTED: "))
(PCHAR (QUOTE " ANOTHER CONSTITUENT TO BE ADDED TO IT "))
(PCHAR (QUOTE " WAS EXPECTED. PERHAPS YOU ENTERED AN "))
(PCHAR (QUOTE * INVALID ELLIPSIS , ™))
]
L]
"

G

(PCHAR (QUOTE " OR THIS VERB IS A PRESENT PARTICIPLE "))
(PCHAR (QUOTE " OR A PAST PARTICIPLE BUT IS NOT MARKED "))
EggggglgggoTE AS SUCH IN THE DICTIONARY. "))

(BASENP/HEAD?
((AND (WRD 'S)
(NOT (AND (PLURAL'S (CAR (GETR PREMODS)))
(DET/NUMBERCHECK DET? (QUOTE PLURAL) HEAD))))
3 (; The 'S was used to pluralize a roun that cannot be made
plural in that way.)

(PCHAR (QUOTE ® THE NOUN ' ™))

(PRINT<REG (GETR HEAD))

(PCHAR (QUOTE " * CANNOT SE MADE PLURAL BY ADDING °'S. ™))

(TERPRI))

((NQT (OR (WRD °'S)

(DET/NUMBERCHECK DET? NIL HEAD)))

(; The determiner and the head roun disagree ir number.)
(PCHAR (QUOTE " THE DETERMINER ' ™))

(PRINT-REG (GETR DET?))

(PCHAR (QUOTE " * AND THE HEAD NOUN * ™))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE " ' DO NOT AGREE IN NUMBER (SINGULAR/PLURAL). ™))
(éTERPRI))

(; If blocked here not because of ary of the above, ther the
semanrtic check or the base noun phrase (BASENP) usinrg
the head nourn (HEAD), the determirer (DET?) and the
premodifiers (PREMODS) was not successful.)

(PCHAR (QUOTE ™ THE NOUN PHRASE CONSTRUCTED SO FAR IS ™))

(PCHAR (QUOTE " NOT ABLE TO BE UNDERSTOOD. "))

(TERPRI)

(PCHAR (QUOTE " THE DETERMINER: "))

(TERPRI)

(PRINTREG (GETR DET?))

(TERPRI)

(PCHAR (QUOTE ™ AND THE PREMODIFIER: "))

(TERPRI)

(PRINT-REG (GETR PREMODS))

(TERPRI)

(PCHAR (QUOTE " ARE NOT ABLE TO BE UNDERSTOOD AS BEING ™))

(PCHAR (QUOTE ™ CONSISTENT WITH: ™))

(PRINTSREG (GETR HEAD))

(TERPRI)))

N L g b

106

(BASENP/SPLIT
(T

(; The parse will block here due to disagreement ir rumber
between the deterniner anrd the noun or because the
semantic check of the base noun phrase fsiled. This
is the same situstion as with the state BASENP/HEAD?
except that ir that state, having 'S could csuse 3
problem. Since we don't have the 'S here, we car use
BASENP/HEAD?': condition/actior pairs and the first

r will just always be skipped.)

(CONDACT BASENP/HEAD?)))

(DA{%/DAY&HOHTH

(; We can block here only if we had & noun phrase that was
expected to have a FRAMETYPE of <YEAR>, but it did
not. In other words, instead of a year, such as '1980°,
8 'year-phrase', such as 'THE YEAR THAT...', s
scceptable (but, orly {f the phrase has beer
'aolantienlly defined™ as beirg an instance of <YEAR>).)
(PCHAR (QUOTE ™ A NOUN PHRASE DEFINING THE YEAR OF "))
(PCHAR (QUOTE ™ THE DATE WAS EXPECTED. THE PHRASE ' ™))
(PRINT=ANY-STRING ®)
(PCHAR (QUOTE "™ ' CANNOT BE INTERPRETED AS A YEAR. "))
(TERPRI)))

(DATE/END
(T

(; The end of the date (and the noun) phrase i3 expected. We
bloeck here 1f DAY, MONTH, and YEAR 40 not form a
semartically valtd CDATED>.)

(PCHAR (QUOTE ™ THE DATE CONSTRUCTION 1S BELIEVED TO BE "))

(PCHAR (QUOTE " COMPLETED. HOWEVER, THE COMPONENTS "))

(TERPRI)

(COND ((GETR DAY)

(PCHAR (QUOTE " DAY: »))
(PRINT-REG (GETR DAY))))

(TERPRI)

(COND ((GETR MONTH)

(PCHAR (QUOTE " MONTH: *))
(PRINT-REG (GETN MONTH)))

(TERPRI)

(COND ((GETR YEAR)

(PCHAR (QUOTE " YEAR: "))
(PRINT-REG (GETR YEAR))))

(TERPRI)

(PCHAR (QUOTE ™ ARE UNABLE TO BE UNDERSTOOD TOGETHER "))

(PCHAR (QUOTE ™ AS A VALID DATE. "))

(TERPRI)))

L.

107

(NP(;artitivoDET

T e T DO AR TR e ¥ i P

(; We canr block here only if a word is not classified fully
as a NOUN, ADJ, PASTPART, etc. or 1if the senterce is
not grammatical. Whatever the case, what was expected
is printed.)

(PCHAR (QUOTE ™ AFTER A PARTITIVE DETERMINER SUCH AS ' "))

(PRINT-REG (GETR PARTITIVE/DET))

! (PCHAR (QUOTE » ', ONE OF THE FOLLOWING WAS EXPECTED. "))

\ (COND ((GETR ALLDET)

S

: (PCHAR (QUOTE " '*THE' OR A POSSESSIVE PROUNOUN "))
‘ (PCHAR (QUOTE " (ALL 'THE' PEQPLE...) "))
K (PCHAR (QUOTE " (ALL ‘'HER' PAPERS...) "))
: (PCHAR (QUOTE " A NOUN

(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(TERPRI)
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(PCHAR (QUOTE
(TERPRI)))

(THE LARGEST 'TREE'...)
A PRESENT OR PAST PARTICIPLE
(THE FIRST 'DEFEATED' ARMY...)
AN ADJECTIVE
(TWO °'QUICK' FOXES...)
AN ADVERB
(THE FIRST 'SLOWLY' MOVING VEHICLE...)
AN 'OF' PREPOSITIONAL PHRASE
(THE LAST THREE 'OF' THE MEN...)

IF NONE OF THE ABOVE ARE TRUE, THEN "))

AN ELLIPTICAL REFERENCE TO A PREVIOUS "))
NOUN (ELLIPTICAL ANAPHORA) 1S EXPECTED. ™))
(THE FIRST WAS... OR THREE ARE...) ™))
HOWEVER, THERE 1S NO EVIDENCE TO INDICATE ™))
THAT THIS 18 THE CASE HERE EITHER. ™))

23 33 332 33 3 3
e o e N N N P N N
— N e N Nl N N e s

(NPLIST/
(T

(; We car dlock here onrly if the newly fourd roun phrase cannot
be compatible with the roun phrase(s) it is conjoired to.)

(PCHAR (QUOTE " THE MOUN PHRASE ' ™))

(PRINT=ANY-STRING #)

(PCHAR (QUOTE " ' IS NOT COMPATIBLE WITH THE NOUN PHRASE(S) ™))

E;ggggxg?gor: * THAT IT IS CONJOINED TO. ™))

(NP&;ST/NP

(; We car bdlock here onrly if the corjoiring of the nour phrases
was not correct.)
(PCHAR (QUOTE * CONJOINED NOUN PHRASES WERE EXPECTED, ™))
(PCHAR (QUOTE " BUT THE STRUCTURE OF THE SENTENCE ")) .
} (PCHAR (QUOTE " AT THIS POINT MAKES SUCH AN INTEPRETATION ™)) ;
N (PCHAR (QUOTE " IMPOSSIBLE. ")) 5
j { (TERPRI))) :

[T

SN R B)

108

‘NP/INTID

. ((NOT (ASSIGNQ INTIDS HEAD IDENTIFIER POSTMODCASES))

' (; We will block at this state if the integer identifier(s) are
not able to check semartically with the HEAD noun (this
conditiorn) or if they do check alone with the HEAD, but
40 rot check along with all of cho other modifiers of
HEAD (the following condition).

(PCHAR (QUOTE " THE INTEGER(S) "))

(PRINT-REG (GETR INTIDS))

‘ (PCHAR (QUOTE = CANNOT 3E UNDERSTOOD AS IDENTIFYING ' "))

2 (PRINT-REG (GETR HEAD))

‘ (PCHAR (QUOTE " ' . ")) -

3 (TERPRI))

| (T

Pt Ry 3, N PRI, JGAGES SN YT o e
T)

*
L.

(PCHAR (QUOTE " ALTHOUGH THE INTEGER IDENTIFIER(S) "))
! (PRINT-REG (GETR INTIDS))

t (PCHAR (QUOTE " ARE UNDERSTOOD AS IDENTIFIERS OF ' ™))
] (PRINT-REG (GETR HEAD))

(PCHAR (QUOTE " ', THE OTHER MODIFIERS OF IT "))
(PCHAR (QUOTE ® ARE NOT CONSISTENT WITH THIS "))
(PCHAR (QUOTE " INTERPRETATION. "))

(TERPRI)))

(NP/APPOSITE/NP
((NOT (WRD ,))

(; We block here if the appositive does not end (as it started)
with a comma, cr if the appositive phrase does rot check
semantically with the HEAD nourn.)

(PCHAR (QUOTE " AN APPOSITIVE NON PMRASE, SUCH AS ' ™))

(PRINT-REG (GETR APPOSITE))

(PCHAR (QUOTE " *, SHOULD END WITH A COMMA. "))
(%TERPRI))

(PCHAR (QUOTE ™ THE APPOSITIVE NOUN PHRASE ' ™))

(PRINT-REG (GETR APPOSITE))

(PCHAR (QUOTE ™ ' CANNOT BE UNDERSTOOD AS A MODIFIER OF ' ™))
(PRINT-REC (GETR READ))

(PCHAR (QUOTE * * . ™))

(TERPRID)))

(NP/POSTMODS?
((LISTP #)
(; If ® is a list, then its value is the prepositioral phrase
that was found at the end of the noun phrase. We block
§ here if it does not check semantically as a modifier of
p ¢ the HEAD noun.)
: (PCHAR (QUOTE " THE PREPOSITIONAL PHRASE ' "))

g (PRINT-ANY=STRING ®)

(PCHAR (QUOTE * ' CANNOT BE UNDERSTOOD AS A MODIFIER "))

(PCHAR (QUOTE " OF THE NOUN ' n))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE » * . ™))

(TERPRI))

((OR (CAT INTEGER)
(WRD (NUMBER NUMERS)))

(; This handles the case where (from NP/BASENP) a noun was
numerically idertified, but it is not allowed to be so
identified (semantically), so the jump to NP/POSTMODS?
was taken, ard here we block.)

(PCHAR (QUOTE " THE NOUN ' m))

(PRINT=-REG (GETR HEAD))

(PCHAR (QUOTE * ' CANNOT HAVE A NUMERIC IDENTIFIER. ™))

(éTERPRI))

:L
t
s
z
;
s

N

e

A = e

(; The noun phrase is believed to be complete. The semantic
check on the consistency and completeness of the
modifiers of the HEAD noun failed.)

(PCHAR (QUOTE ™ THE NOUN PHRASE IS BELIEVED TO BE "))

(PCHAR (QUOTE ™ COMPLETE. HOWEVER, THE MODIFIERS OF * "))

(PRINT=-REG (GETR HEAD)))

(PCHAR (QUOTE " ' ARE NOT CONSISTENT; THEY ARE NOT "))

(PCHAR (QUOTE " ALL ABLE TO BE UNDERSTOOD. "))

(TERPRI)))

(NP(;HOD?

(; We will block here if the clause-type postmodifier was
Pl found but does not check semantically.)

(PCHAR (QUOTE " THE CLAUSE * ™))

(PRINT=-ANY=STRING ®)

(PCHAR (QUOTE ™ * IS NOT ABLE TO BE UNDERSTOOD "))

(PCHAR (QUOTE "™ AS A MODIFIER OF ' ™))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE " ' , "))

(TERPRI)))

(NP/RESUME
((EQ (CAAR ®)
(QUOTE PP))

{; The prepositional phrase does not check semantically (this
cordition) or the clause-type postmodifier does not
check semantically (next cordition).)

(PCHAR (QUOTE " THE PREPOSITIONAL PHRASE ' ™))

(PRINT=ANY-STRING *)

i i A A ot P 4 57—

110

(PCHAR (QUOTE * * IS NOT ABLE TO BE UNDERSTOOD "))
(PCHAR (QUOTE "™ AS A MODIFIER OF ' ™))

(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE » ' . "))

(TERPRI))

(T
(CONDACT NP/3SMOD?)))

S/PP is entered via a trapsition from state S/ after a preposil.onal
phrase has been successfully pushed for and popped. It
there is a "," here, it is consumed and a transitionr is
made to state S/, otherwise the ¢transitior (s made to
state S/ without consuming ary of the input strirg.

S/ADJUNCT is entered via a trarsition from state S/ after ar adjurct has
beer successfully pushed for and popped. If there is a
"." nere, it is consumed and S/ADJUNCT is re-entered. Ir
there is a 'THEN' and we had an IF as a binder, then the
*THEN' is consumed and a transitior made to state S/.
Otherwise, the ¢transition is made to S/ with no consump-
tion of the input string.

S/DECL is entered via a trarsitior from S/, P/COMP, SMOD/1, SMOD/RELPP or
SMOD/WHENorWHERE. Ir all cases, a declarative sentence is
expected. If there is a 'FOR', 'TO', or 'THAT' nere, »
JUMP to S/SUBJCOMP? {s taken. If we have had a relative
clause with ar explicit subject ard a relative proroun
(*THE MAN WHOM THE BOY TOLD US ABOUT.'), 8 JUMP to S/NP is
takon.npsthcrutse, & roun phrase is examined by a8 PUSH for
state «

Q/HOW 13 entered via a transition from state Q/. We had the word 'HOW'
and row have ar adjective or ar adverd. After the ap-
propriate register-setting sctions, state S/NP is entered,
the adjective or sdverd having been consumed.

S/SUBJCOMP? is entered after finding a 'FOR', 'TO' or 'THAT' ir state
S/DECL. If the word is not 'FOR' or 'TO' state NP/ s
PUSHed; if it s 'FOR', °'TO' or 'THAT', ther SMOD/ is
PUSHed. We are looking for the subject or subject comple-
ment.

S/NP is entered from ADJUNCT/, Q/, Q/HOW, S8/, S/DECL, S/SUBJCOMP?,
SMOD/1, SMOD/FOR/COMPL, SMOD/FOR/NP, SMOD/NPONLY, or
SMOD/RELPP. Ir all cases, s verd or adverd is expected
after havirg had the word 'TO’, the word 'THERE', the worsd
'HOW' followed by an adjective or an adverd, a nour
phrase, or a modifyinrg noun phrase. If s verd i3 or the
hold 1ist, a JUMP ia taker to state VP/V; if the currert
word 1s ar adverd, it is conrsumed and S/NP re-enrtered;
otherwise, 8 JUMP to S/NP/1 is made.

2. RPN SOPTIE SISO 6P, LRI

R

it NI IR

VP/HEAD {s ertered from VP/ASSIGNHEAD, VP/UNTENSEDanrdPASTPART, or VP/V,
Either there is a passive construction and the verd has
been found, the mair verd can take a prepositior ard it
was found, or a nour phrase was found to complete a
*THERE' phrase. Whatever the case, the verd is complete
and objects are expected. If the head verd is irtransi-
tive or the senrtence is a POSS-ING ("MY LEAVING WAS..."),
ther a JUMP tc VP/INTRANS is made; otherwise, a JUMP to
VP/GETOBJ.

VP/INTRANS is entrred via a transitior from VP/HEAD above. If the verd
can also be transitive ard there is evidence for ar object
(ore has been found but not placed yet, the verb carn take
a °'FOR/TO' complement, or a NP is possibly next), ther a
JUMP to VP/GETOBJ is taken; otherwise, a JUMP to VP/0BJ.

NP/ is entered via a JUMP from NP/PartitiveDET or a PUSH from a number of
states. INP/ and NP/ form the begirning state group of
the nourn pht :se aralysis. If the currenrt word is 'BOTH'
or 'EITHER', NPLIST/ is entered ard the word is conrsumed.
If a nour phrase is or the hold 1list, state NP/VIR or
state NP/WAITVIR (s JUMPED to. Otherwise, a PUSH focr 1INP/
is made.

NP/VIR is ertered from NP/ above. A nour phrase is or the hold 1ist. If
there is row another possible noun phrase, NP/ is PUSHed
for. Otherwise, the held nour phrase s removed ard 3
transition to state POPIT/ {s made.

NP/WAITVIR is entered from NP/ gbove. A nour phrase is or the hold list
and there may be ancther one begirning here., The held
roun phrase is removed from the hold list and state POPIT/
is entered. Because of a WAIT at that arc, state NP/ is
first PUSHed for, and, Lf successful before the WAIT s
over, state NPLIST/NP is entered.

NP/BASENP is entered from BASENP/SPLIT, BASENP/HEAD?, NP/PartitiveDET,
INP/, NPLIST/MP, or NP/PRO., The roun phrase may be com-
pleted. Possessives (' or 'S), integer identifiers,
POSS-ING participle, or appositive phrases are looked for.
If none of the above, NP/POSTMODS? is ertered to finrd ary
prepositioral or relative clause postmodifiers.

INP/ is PUSHed for from NP/ above. If a year, date, string, pronourn, oOr
determiner is here, BASENP/, NP/BASENP, NP/PRO, or DET/ is
entered., Otherwise, state BASENP/ is JUMPed to.

NP/POSS is entered from NP/BASENP. The determiners and head noun have
beer found, and @ "'" or & "'S$" indicating s possessive
was consumed. State DET/POSTARTS? (s PUSHed to finrd
further sdditions to the roun phrase - ordirals, numbers,
superlatives, ete,

NP/APPOSITE is entered via a transition from NP/BASENP. The nour phrase
is believed to be completed, a "," was found, and the head
noun car take ar appositive phrase. State NP/ {s PUSHed

;
¢
;
A

5

swe s o

RIS PR W o ¢ PUFITRT ¢ 7 g

P e e

to aralyze the appositive.

NP/POSTMODS? /PP is ertered from NP/RESUME or NP/POSTMODS?. In both

cases, a prepositionsl phrase {(as a nour phrase modifier)
was just corsumed. If there is a "," here and a preposi-
tion followirg that, the comma is consumed and
NP/POSTMODS? entered. Otherwise, a JUMP ¢o NP/POSTMQDS?
is made.

BASENP/ is entered from INP/, NP/PartitiveDET, or DET/POSTARTS?. In the

BASENP/VoraDJ

first case, no determiners, dates, strirgs, or prorouns
were found at the begirning of the noun phrase; the "base”
of the noun phrase car be looked for. In the second case,
a partitive determiner ir a short form (no prepositioral
phrases) was found and the "base" of the roun phrase is
rext. Ir the last case, a year was found, or there are nc
more ordinals, numbers, superlatives, etc. - the deter-
mirer is completed and the "base" of the phrase is next.
If the current word is ar adjective, present participle,
or past participle, BASENP/VorADJ is JuMPed to. If it is
both a noun and an adjective, present participle, or past
participle (such as 'GREEN', 'FRAME', etc.), ther a JUMP
is made to BASENP/HARD. Otherwise, BASENP/NotVorADJ is
JUMPed to. -

is entered from BASENP/ above. This tranrsition was taker
because the current word was ar adjective, presert partie
ciple, or past participle. The three arcs ir this state
each handle one of the three cases. Because there are ro
conditions or semantic ABORTs, this state serves to set
registers; it carnot block the parse. BASENP/ is entered
in the adjective and past participle cases, BASENP/HEAD?
in the present participle case.

SASENP/HARD s entered via a transitior from BASENP/ above. If there
have been no adverds, thern the word is consumed ard
BASENP/HEAD? entered. Otherwise, we have the situation as
described in BASENP/VorADJ above. (If there were nc ad-
verbs, we take the noun irterpretation of the word.)

JATE/MONTH is entered from BASENP/NotVorADJ. There were nrc determirers

JET/POSTARTS?

and a monrth was consumed. The date may be ir ary of the
followirg forms: 'MAY THE...', 'MAY 18...', 'MAY
SIXTH...', or 'MAY 1980'. 1If the current word is 'THE"',
it is consumed ard DATE/MONTH re-entered. If it is ar
irteger (less thar 32), the day i{s found and a trarsition
taker to DATE/DAYSMONTH. If it is ar ordiral (other thar
'LAST'), the day s found and DATE/DAYLMONTH ertered.
Otherwise, a JUMP to DATE/DAY&MONTH i{s taker.

is entered from DET/, RELNP/WHOSE, or
PARTITIVERELNP/POSTARTS?. Ir all cases, the beginnirg of
a determirer was found ('THE', a quartity, an ordinal,
etc.). This state picks up the remairirg parts of the
determiner. If the current word i3 a year, BASENP/ is
JUMPed to. 1If it is s month and there have beer rc¢

U W R ST I3 T 2

e e e e LR 2 i

113

ordirals or superlatives, but there was a quartity, then
DATE/DAY&MONTH is entered (it's a date). Superlatives,
ordirals, and irtegers are consumed and DET/POSTARTS? re-
ertered. If there was a partitive determirer, a JUMP ¢o
NP/PartitiveDET is taken. Otherwise, the determirer must 3}
be completed, arnd a JUMP to BASENP/ is made.

{Note: All of the ®BAKSTK® messages were writter, not
L just those for the S, VP, and NP groups. The
action (function) PRINT-EM defired belcow is
used by some of the P"BAKSTK® messages to output
what is knowr sbout the main serterce.]

(DEFPROP
PRINT-EM
(LAMBDA X

(PCHAR (QUOTE " IN THE MAIN SENTENCE: ™))

(COND ((GETR SUBJECT)
(TERPRI)
(PCHAR (QUOTE " SUBJECT UNDERSTOOD TO BE: ™))
(PRINT-REG (GETR SUBJECT))))

(COND ((GETR HEAD)
(TERPRI)
(PCHAR (QUOTE " VERB UNDERSTOOD TO BE: "))
(PRINT-REG (GETR HEAD))))

(COND ((GETR OBJECT)
(TERPRI)
(PCHAR (QUOTE " OBJECT UNDERSTOOD TO BE: ™))
(PRINT-REG (GETR OQBJECT))))

(COND ((GETR INDOBJ)
(TERPRI)
(PCHAR (QUOTE " INDIRECT OBJECT UNDERSTOOD "))
(PCHAR (QUOTE " TO BE: "))
(PRINT-REG (GETR INDOBJ)))))

TG K OO 5Bk ORI 7 ACB - N AR

FEXPR)

{*BAKSTK®*ADJUNCT/BECAUSE
((AND (EQREG BINDER BECAUSE)
(EQREG STYPE ADJUNCT))

(; The error occcurred while processing the adjunctive embedded
) senrtence.)
. (PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))
: (PCHAR (QUOTE ™ WAS INTERPRETING THE EMBEDDED SENTENCE ™))
o (PCHAR (QUOTE " AS AN ADJUNCT TO THE MAIN SENTENCE. ")) !
H (PCHAR (QUOTE " EVERYTHING BEFORE THE °*BECAUSE' WAS UNDERSTOOD. ")) ;
(TERPRI)
(TERPRI)
(PRINT=-EM)
(TERPRI)))

o T TIar Y e g AP, S e LTSI TN T

aveen

St TR

:
5
B

114

(®3AKSTK®ADJUNCT/BINDER

((ANC (EQREG STYPE ADJUNCT)

(NOT (WRD THE)))
(; The error occurred as above, except that the BINDER is not
*BECAUSE'.)

(PCHAR (QUOTE * THIS ERROR OCCURRED WHILE THE SYSTEM "))

(PCHAR (QUOTE " WAS INTERPRETING THE EMBEDDED SENTENCE "))
3 (PCHAR (QUOTE " (BEGINNING WITH ' "))
3 (PRINT-ANY-STRING LEX)
(PCHAR (QUOTE * ') AS AN ADJUNCT TO THE MAIN SENTENCE. "))
(TERPRI)
(TERPRI)
(PRINT-EM)
(TERPRI)))

(#BAKSTK¥S/ADJUNCT
((AND (EQ (GetPATHR ADJUNCT BINDER)
(QUOTE IF))
(WRD THEN))
(; The error cccurred while parsing the 'THEN' sentence part
of ar 'IF <senrt 1> THEN <sent 2>' phrase.)

(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM ™))
(PCHAR (QUOTE " WAS INTERPRETING THE MAIN SENTENCE "))
(PCHAR (QUOTE " BEGINNING AFTER 'THEN' FOLLOWING "))
(PCHAR (QUOTE " THE ADJUNCT ' "))

(PRINT-REG (GETR ADJUNCT))

(PCHAR (QUOTE * ' . "))

((TERPRI))

T

{(; The error occurred during the processing of the main
sentence after the adjunct (dbut not 'IF...THEN'...).}

(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM ™))

(PCHAR (QUOTE ™ WAS INTERPRETING THE MAIN SENTENCE "))

(PCHAR (QUOTE " FOLLOWING THE ADJUNCT ' "))

(PRINT-REG (GETR ADJUNCT))

(PCHAR (QUOTE " * , "))

(TERPRI)))

(®*BAKSTK®S/PP
(T
(; This error occurred while processing the mair sentence
after a preposed prepositional phrase.)
(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))
(PCHAR (QUOTE " WAS INTERPRETING THE MAIN SENTENCE "))
E;gglk §QUOTE " FOLLOWING THE PREPOSITIONAL PHRASE. "))
PRID))

(*BAKSTK#SMOD/RELPP

(NOT (WRD TO))

(; The modifying phrase begar with a prepositioral phrase.
The error occurred after the prepositioral/modifying
phrase, while processinrg the embedded sertenrce.
(THE DOG TO WHICH 'l GAVE THE BONE.', THE MAN FROM
WHOSE WORDS 'WE ALL DRAW INSPIRATION.').)

(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))

(PCHAR (QUOTE " WAS INTERPRETING AN EMBEDDED SENTENCE "))

(PCHAR (QUOTZ " WITHIN THE MODIFYING PHRASE THAT "))

(PCHAR (QUOTE " BEGAN WITH THE PREPOSITION ' "))

(PRINT-REG (GETR HEADPREP)

(PCHAR (QUOTE " ' . "))

(TERPRI)))

(®BAKSTK®#SMOD /WHENor WHERE
(T

(; This error occurred during the processirg of the embedded
sentence following the 'WHEN' or 'WHERE'. (FRED WAS
EMBARRASSED WHEN 'IT HAPPENED'.))

(PCHAR (QUOTE ™ THIS ERROR OCCURRED WHILE THE SYSTEM "))

(PCHAR (QUOTE " WAS INTERPRETING THE PHRASE BEGINNING WITH ' "))

(PRINT-REG (GETR RELWRD))

(PCHAR (QUOTE " ' AS AN EMBEDDED SENTENCE MODIFYING "))

(PCHAR (QUOTE " THE MAIN SENTENCE. "))

(TERPRI)

(TERPRI)

(PRINT-EM)

(TERPRI)))

(®BAKSTK*VP/THAT?
(T

(; This error occurred during the processirg of ar embedded
sentence followirg a verb that takes a 'THAT' complement
(with or without the actual word 'THAT').)

(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))

(PCHAR (QUOTE " WAS INTERPRETING THE EMBEDDED SENTENCE ™))

(PCHAR (QUOTE " AS A 'THAT' COMPLEMENT OF THE MAIN "))

(PCHAR (QUOTE " SENTENCE. "))

(TERPRI)

(TERPRI)

(PRINT-EM)

(TERPRI)))

et T T

